Welcome to the Mullvad VPN client app. This repository contains all the source code for the
desktop and mobile versions of the app. For desktop this includes the system service/daemon
(mullvad-daemon
), a graphical user interface (GUI) and a
command line interface (CLI).
The Android app uses the same backing system service for the tunnel and security but has a dedicated frontend in android/.
iOS consists of a completely standalone implementation that resides in ios/
There are built and signed releases for macOS, Windows, Linux and Android available on our website and on Github. Support for iOS is in the making.
You can find our code signing keys as well as instructions for how to cryptographically verify your download on Mullvad's Open Source page.
Here is a table containing the features of the app accross platforms. This reflects the current state of latest master, not necessarily any existing release.
Windows | Linux | macOS | Android | |
---|---|---|---|---|
OpenVPN | âś“ | âś“ | âś“ | |
WireGuard | âś“ | âś“ | âś“ | âś“ |
OpenVPN over Shadowsocks | âś“ | âś“ | âś“ | |
Optional local network access | âś“ | âś“ | âś“ | âś“ |
This app is a privacy preserving VPN client. As such it goes to great lengths to stop traffic leaks. And basically all settings default to the more secure/private option. The user has to explicitly allow more loose rules if desired. See the dedicated security document for details on what the app blocks and allows and how it does it.
This repository contains submodules needed for building the app. However, some of those submodules also have further submodules that are quite large and not needed to build the app. So unless you want the source code for OpenSSL, OpenVPN and a few other projects you should avoid a recursive clone of the repository. Instead clone the repository normally and then get one level of submodules:
git clone https://github.com/mullvad/mullvadvpn-app.git
cd mullvadvpn-app
git submodule update --init
We sign every commit on the master branch as well as our release tags. If you would like to verify your checkout, you can find our developer keys on Mullvad's Open Source page.
This repository has a git submodule at dist-assets/binaries
. This submodule contains binaries and
build scripts for third party code we need to bundle with the app. Such as OpenVPN, Shadowsocks
etc.
This submodule conforms to the same integrity/security standards as this repository. Every merge commit should be signed. And this main repository should only ever point to a signed merge commit of the binaries submodule.
See the binaries submodule's README for more details about that repository.
Follow the instructions for your platform, and then the All platforms instructions.
These instructions are probably not complete. If you find something more that needs installing on your platform please submit an issue or a pull request.
The host has to have the following installed:
-
Microsoft's Build Tools for Visual Studio 2019 (a regular installation of Visual Studio 2019 Community edition works as well).
-
Windows 10 SDK.
-
msbuild.exe
available in%PATH%
. If you installed Visual Studio Community edition, the binary can be found under:C:\Program Files (x86)\Microsoft Visual Studio\2019\Community\MSBuild\Current\Bin\amd64
-
bash
installed as well as a few base unix utilities, includingsed
andtail
. The environment coming with Git for Windows works fine. -
gcc
for CGo.
# For building the daemon
sudo apt install gcc libdbus-1-dev
# For building the installer
sudo apt install rpm
# For building the daemon
sudo dnf install dbus-devel
# For building the installer
sudo dnf install rpm-build
These instructions are for building the app for Android under Linux.
sudo apt install zip default-jdk
wget https://dl.google.com/android/repository/sdk-tools-linux-4333796.zip
unzip sdk-tools-linux-4333796.zip
./tools/bin/sdkmanager "platforms;android-28" "build-tools;28.0.3" "platform-tools"
wget https://dl.google.com/android/repository/android-ndk-r20-linux-x86_64.zip
unzip android-ndk-r20-linux-x86_64.zip
./android-ndk-r20/build/tools/make-standalone-toolchain.sh \
--platform=android-21 \
--arch=arm64 \
--install-dir=$PWD/toolchains/android21-aarch64
./android-ndk-r20/build/tools/make-standalone-toolchain.sh \
--platform=android-21 \
--arch=arm \
--install-dir=$PWD/toolchains/android21-armv7
./android-ndk-r20/build/tools/make-standalone-toolchain.sh \
--platform=android-21 \
--arch=x86_64 \
--install-dir=$PWD/toolchains/android21-x86_64
./android-ndk-r20/build/tools/make-standalone-toolchain.sh \
--platform=android-21 \
--arch=x86 \
--install-dir=$PWD/toolchains/android21-i686
Set up the required environment variables:
export AR_aarch64_linux_android="$PWD/toolchains/android21-aarch64/bin/aarch64-linux-android-ar"
export AR_armv7_linux_androideabi="$PWD/toolchains/android21-armv7/bin/arm-linux-androideabi-ar"
export AR_x86_64_linux_android="$PWD/toolchains/android21-x86_64/bin/x86_64-linux-android-ar"
export AR_i686_linux_android="$PWD/toolchains/android21-i686/bin/i686-linux-android-ar"
export CC_aarch64_linux_android="$PWD/toolchains/android21-aarch64/bin/aarch64-linux-android21-clang"
export CC_armv7_linux_androideabi="$PWD/toolchains/android21-armv7/bin/armv7a-linux-androideabi21-clang"
export CC_x86_64_linux_android="$PWD/toolchains/android21-x86_64/bin/x86_64-linux-android21-clang"
export CC_i686_linux_android="$PWD/toolchains/android21-i686/bin/i686-linux-android21-clang"
export ANDROID_HOME="$PWD"
These steps has to be done after you have installed Rust in the section below:
rustup target add aarch64-linux-android armv7-linux-androideabi i686-linux-android x86_64-linux-android
This block assumes you installed everything under /opt/android
, but you can install it wherever
you want as long as the ANDROID_HOME
variable is set accordingly.
Add to ~/.cargo/config
:
[target.aarch64-linux-android]
ar = "/opt/android/android-ndk-r20/toolchains/llvm/prebuilt/linux-x86_64/bin/aarch64-linux-android-ar"
linker = "/opt/android/android-ndk-r20/toolchains/llvm/prebuilt/linux-x86_64/bin/aarch64-linux-android21-clang"
[target.armv7-linux-androideabi]
ar = "/opt/android/android-ndk-r20/toolchains/llvm/prebuilt/linux-x86_64/bin/arm-linux-androideabi-ar"
linker = "/opt/android/android-ndk-r20/toolchains/llvm/prebuilt/linux-x86_64/bin/armv7a-linux-androideabi21-clang"
[target.x86_64-linux-android]
ar = "/opt/android/android-ndk-r20/toolchains/llvm/prebuilt/linux-x86_64/bin/x86_64-linux-android-ar"
linker = "/opt/android/android-ndk-r20/toolchains/llvm/prebuilt/linux-x86_64/bin/x86_64-linux-android21-clang"
[target.i686-linux-android]
ar = "/opt/android/android-ndk-r20/toolchains/llvm/prebuilt/linux-x86_64/bin/i686-linux-android-ar"
linker = "/opt/android/android-ndk-r20/toolchains/llvm/prebuilt/linux-x86_64/bin/i686-linux-android21-clang"
In order to build release APKs, they need to be signed. First, a signing key must be generated and
stored in a keystore file. In the example below, the keystore file will be
/home/user/app-keys.jks
and will contain a key called release
.
keytool -genkey -v -keystore /home/user/app-keys.jks -alias release -keyalg RSA -keysize 4096 -validity 10000
Fill in the requested information to generate the key and the keystore file. Suppose the file was
protected by a password keystore-password
and the key with a password key-password
. This
information should then be added to the android/keystore.properties
file:
keyAlias = release
keyPassword = key-password
storeFile = /home/user/app-keys.jks
storePassword = keystore-password
-
Get the latest stable Rust toolchain via rustup.rs.
-
Get the latest version 12 release of Node.js and the latest version of npm.
brew install node
Just download and unpack the
node-v12.xxxx.tar.xz
tarball and add itsbin
directory to yourPATH
.Download the Node.js installer from the official website.
-
Install Go (ideally version
1.13.6
) by following the official instructions. Newer versions of Go may be used. Earlier versions may be used, but versions older than1.12
are known to not work, newer versions may too. Sincecgo
is being used, make sure to have a C compiler in your path. On Windowsmingw
'sgcc
compiler should work.gcc
on most Linux distributions should work, andclang
for MacOS.
The simplest way to build the entire app and generate an installer is to just run the build script.
--dev-build
is added to skip some release checks and signing of the binaries:
./build.sh --dev-build
This should produce an installer exe, pkg or rpm+deb file in the dist/
directory.
Building this requires at least 1GB of memory.
If you want to build each component individually, or run in development mode, read the following sections.
-
Firstly, one should source
env.sh
to set the default environment variables. One can also source the variables on Powershell withenv.ps1
, however most of our scripts require bash.source env.sh # Or if you use Powershell: . .\env.ps1
-
If you are on Windows, then you have to build the C++ libraries before compiling the daemon:
bash ./build_windows_modules.sh --dev-build
-
Build the system daemon plus the other Rust tools and programs:
cargo build
-
Copy the OpenVPN and Shadowsocks binaries, and our plugin for it, to the directory we will use as resource directory. If you want to use any other directory, you would need to copy even more files.
cp dist-assets/binaries/<platform>/{openvpn, sslocal}[.exe] dist-assets/ cp target/debug/*talpid_openvpn_plugin* dist-assets/
-
Run the daemon with verbose logging with:
sudo MULLVAD_RESOURCE_DIR="./dist-assets" ./target/debug/mullvad-daemon -vv
It must run as root since it modifies the firewall and sets up virtual network interfaces etc.
-
TALPID_FIREWALL_DEBUG
- Helps debugging the firewall. Does different things depending on platform:- Linux: Set to
"1"
to add packet counters to all firewall rules. - macOS: Makes rules log the packets they match to the
pflog0
interface.- Set to
"all"
to add logging to all rules. - Set to
"pass"
to add logging to rules allowing packets. - Set to
"drop"
to add logging to rules blocking packets.
- Set to
- Linux: Set to
-
TALPID_DNS_MODULE
- Allows changing the method that will be used for DNS configuration on Linux. By default this is automatically detected, but you can set it to one of the options below to choose a specific method:"static-file"
: change the/etc/resolv.conf
file directly"resolvconf"
: use theresolvconf
program"systemd"
: use systemd'sresolved
service through DBus"network-manager"
: useNetworkManager
service through DBus
-
Go to the
gui
directorycd gui
-
Install all the JavaScript dependencies by running:
npm install
-
Start the GUI in development mode by running:
npm run develop
If you change any javascript file while the development mode is running it will automatically transpile and reload the file so that the changes are visible almost immediately.
Please note that the GUI needs a running daemon to connect to in order to work. See Building and running mullvad-daemon for instruction on how to do that before starting the GUI.
MULLVAD_PATH
- Allows changing the path to the folder with themullvad-problem-report
tool when running in development mode. Defaults to:<repo>/target/debug/
.
Running the build-apk.sh
script will build the necessary Rust daemon for all supported ABIs and
build the final APK. You may pass a --dev-build
to build the Rust daemon and the UI in debug mode
and sign the APK with automatically generated debug keys.
./build-apk.sh
If the above fails with an error related to compression, try allowing more memory to the JVM:
echo "org.gradle.jvmargs=-Xmx4608M" >> ~/.gradle/gradle.properties
./android/gradlew --stop
When making a real release there are a couple of steps to follow. <VERSION>
here will denote
the version of the app you are going to release. For example 2018.3-beta1
or 2018.4
.
-
Follow the Install toolchains and dependencies steps if you have not already completed them.
-
Make sure the
CHANGELOG.md
is up to date and has all the changes present in this release. Also change the[Unreleased]
header into[<VERSION>] - <DATE>
and add a new[Unreleased]
header at the top. Push this, get it reviewed and merged. -
Run
./prepare_release.sh <VERSION>
. This will do the following for you:- Check if your repository is in a sane state and the given version has the correct format
- Update
package.json
with the new version and commit that - Add a signed tag to the current commit with the release version in it
Please verify that the script did the right thing before you push the commit and tag it created.
-
When building for Windows or macOS, the following environment variables must be set:
-
CSC_LINK
- The path to the certificate used for code signing.- Windows: A
.pfx
certificate. - macOS: A
.p12
certificate file with the Apple application signing keys. This file must contain both the "Developer ID Application" and the "Developer ID Installer" certificates + private keys.
- Windows: A
-
CSC_KEY_PASSWORD
- The password to the file given inCSC_LINK
. If this is not set thenbuild.sh
will prompt you for it. If you set it yourself, make sure to define it in such a way that it's not stored in your bash history:export HISTCONTROL=ignorespace export CSC_KEY_PASSWORD='my secret'
-
macOS only:
-
NOTARIZE_APPLE_ID
- The AppleId to use when notarizing the app. Only needed on release builds -
NOTARIZE_APPLE_ID_PASSWORD
- The AppleId password for the account inNOTARIZE_APPLE_ID
. Don't use the real AppleId password! Instead create an app specific password and add that to your keyring. See this documentation: https://github.com/electron/electron-notarize#safety-when-using-appleidpasswordSummary:
- Generate app specific password on Apple's AppleId management portal.
- Run
security add-generic-password -a "<apple_id>" -w <app_specific_password> -s "something_something"
- Set
NOTARIZE_APPLE_ID_PASSWORD="@keychain:something_something"
.
-
-
-
Run
./build.sh
on each computer/platform where you want to create a release artifact. This will do the following for you:- Update
relays.json
with the latest relays - Compile and package the app into a distributable artifact for your platform.
Please pay attention to the output at the end of the script and make sure the version it says it built matches what you want to release.
- Update
The integration tests are located in the mullvad-tests
crate. It uses a mock OpenVPN binary to
test the mullvad-daemon
. To run the tests, the mullvad-daemon
binary must be built first.
Afterwards, the tests should be executed with the integration-tests
feature enabled. To simplify
this procedure, the integration-tests.sh
script can be used to run all integration tests.
$ npm run develop
- develop app with live-reload enabled$ npm run lint
- lint code$ npm run pack:<OS>
- prepare app for distribution for your platform. Where<OS>
can belinux
,mac
orwin
$ npm test
- run tests
- gui/packages/
- components/ - Platform agnostic shared react components
- desktop/ - The desktop implementation
- assets/ - graphical assets and stylesheets
- src/
- main/
- index.ts - entry file for the main process
- renderer/
- app.ts - entry file for the renderer process
- routes.ts - routes configurator
- transitions.ts - transition rules between views
- config.json - App color definitions and URLs to external resources
- main/
- test/ - Electron GUI tests
- dist-assets/ - Icons, binaries and other files used when creating the distributables
- binaries/ - Git submodule containing binaries bundled with the app. For example the statically linked OpenVPN binary. See the README in the submodule for details
- linux/ - Scripts and configuration files for the deb and rpm artifacts
- pkg-scripts/ - Scripts bundled with and executed by the macOS pkg installer
- windows/ - Windows NSIS installer configuration and assets
- api_root_ca.pem - The root CA for the api.mullvad.net endpoint. The app uses certificate pinning
- ca.crt - The Mullvad relay server root CA. Bundled with the app and only OpenVPN relays signed by this CA are trusted
- build_windows_modules.sh - Compiles the C++ libraries needed on Windows
- build.sh - Sanity checks the working directory state and then builds release artifacts for the app
The daemon is implemented in Rust and is implemented in several crates. The main, or top level,
crate that builds the final daemon binary is mullvad-daemon
which then depend on the others.
In general one can look at the daemon as split into two parts, the crates starting with talpid
and the crates starting with mullvad
. The talpid
crates are supposed to be completely unrelated
to Mullvad specific things. A talpid
crate is not allowed to know anything about the API through
which the daemon fetch Mullvad account details or download VPN server lists for example. The
talpid
components should be viewed as a generic VPN client with extra privacy and anonymity
preserving features. The crates having mullvad
in their name on the other hand make use of the
talpid
components to build a secure and Mullvad specific VPN client.
- Cargo.toml - Main Rust workspace definition. See this file for which folders here are daemon Rust crates.
- mullvad-daemon/ - Main Rust crate building the daemon binary.
- talpid-core/ - Main crate of the VPN client implementation itself. Completely Mullvad agnostic privacy preserving VPN client library.
Explanations for some common words used in the documentation and code in this repository.
- App - This entire product (everything in this repository) is the "Mullvad VPN App", or App for
short.
- Daemon - Refers to the
mullvad-daemon
Rust program. This headless program exposes a management interface that can be used to control the daemon - Frontend - Term used for any program or component that connects to the daemon management
interface and allows a user to control the daemon.
- GUI - The Electron + React program that is a graphical frontend for the Mullvad VPN App.
- CLI - The Rust program named
mullvad
that is a terminal based frontend for the Mullvad VPN app.
- Daemon - Refers to the
A list of file paths written to and read from by the various components of the Mullvad VPN app
On Windows, when a process runs as a system service the variable %LOCALAPPDATA%
expands to
C:\Windows\system32\config\systemprofile\AppData\Local
.
All directory paths are defined in, and fetched from, the mullvad-paths
crate.
The settings directory can be changed by setting the MULLVAD_SETTINGS_DIR
environment variable.
Platform | Path |
---|---|
Linux | /etc/mullvad-vpn/ |
macOS | /etc/mullvad-vpn/ |
Windows | %LOCALAPPDATA%\Mullvad VPN\ |
Android | /data/data/net.mullvad.mullvadvpn/ |
The log directory can be changed by setting the MULLVAD_LOG_DIR
environment variable.
Platform | Path |
---|---|
Linux | /var/log/mullvad-vpn/ + systemd |
macOS | /var/log/mullvad-vpn/ |
Windows | C:\ProgramData\Mullvad VPN\ |
Android | /data/data/net.mullvad.mullvadvpn/ |
The cache directory can be changed by setting the MULLVAD_CACHE_DIR
environment variable.
Platform | Path |
---|---|
Linux | /var/cache/mullvad-vpn/ |
macOS | /var/root/Library/Caches/mullvad-vpn/ |
Windows | %LOCALAPPDATA%\Mullvad VPN\ |
Android | /data/data/net.mullvad.mullvadvpn/cache |
The full path to the RPC address file can be changed by setting the MULLVAD_RPC_SOCKET_PATH
environment variable.
Platform | Path |
---|---|
Linux | /var/run/mullvad-vpn |
macOS | /var/run/mullvad-vpn |
Windows | //./pipe/Mullvad VPN |
Android | /data/data/net.mullvad.mullvadvpn/rpc-socket |
The GUI has a specific settings file that is configured for each user. The path is set in the
gui/packages/desktop/main/gui-settings.ts
file.
Platform | Path |
---|---|
Linux | $XDG_CONFIG_HOME/Mullvad VPN/gui_settings.json |
macOS | ~/Library/Application Support/Mullvad VPN/gui_settings.json |
Windows | %LOCALAPPDATA%\Mullvad VPN\gui_settings.json |
Android | Present in Android's logcat |
How to modify and generate menubar icons are described here.
Instructions for how to handle locales and translations are found here.
Mullvad has used external pentesting companies to carry out security audits of this VPN app. Read more about them in the audits readme
- If you want to modify babel-configurations please note that
BABEL_ENV=development
must be used for react-native
Copyright (C) 2020 Mullvad VPN AB
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
For the full license agreement, see the LICENSE.md file