Supervised Co-contrastive Graph Learning for Drug-Target Interaction Prediction
We provide an example script to run experiments on our dataset:
- Run
./SGCL-DTI/main.py
: predict drug-target interactions.
-Run ./main.py
You can run the entire model
CLaugmentdti.py
: data augment for graph contrastive learningmodeltestdtiseed.py
: SGCL modelutilsdeiseed.py
: tool kitmain.py
: use the dataset to run SGCL-DTIGCNLayer.py
: a GCL layers
drug.txt
: list of drug namesprotein.txt
: list of protein namesdisease.txt
: list of disease namesse.txt
: list of side effect namesdrug_dict_map
: a complete ID mapping between drug names and DrugBank IDprotein_dict_map
: a complete ID mapping between protein names and UniProt IDmat_drug_se.txt
: Drug-SideEffect association matrixmat_protein_protein.txt
: Protein-Protein interaction matrixmat_protein_drug.txt
: Protein-Drug interaction matrixmat_drug_protein.txt
: Drug_Protein interaction matrixmat_drug_drug.txt
: Drug-Drug interaction matrixmat_protein_disease.txt
: Protein-Disease association matrixmat_drug_disease.txt
: Drug-Disease association matrixSimilarity_Matrix_Drugs.txt
: Drug similarity scores based on chemical structures of drugsSimilarity_Matrix_Proteins.txt
: Protein similarity scores based on primary sequences of proteins
If you use our code, please cite our paper at the same time. Thank you!!!
Yang Li, Guanyu Qiao, Xin Gao, Guohua Wang, Supervised graph co-contrastive learning for drug–target interaction prediction, Bioinformatics, Volume 38, Issue 10, 15 May 2022, Pages 2847–2854, https://doi.org/10.1093/bioinformatics/btac164