Skip to content

Eval bug: issues with draft model and Cline+VSCode #10547

@Nepherpitou

Description

@Nepherpitou

Name and Version

 .\llama-cli.exe --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
  Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
version: 1 (46c69e0)
built with MSVC 19.29.30157.0 for

Operating systems

Windows

GGML backends

CUDA

Hardware

Ryzen 7900X, 128G DDR5, RTX 3090 + RTX 4090

Models

Main - qwen2.5-coder-32b-instruct-q6_k.gguf
Draft - qwen2.5-coder-1.5b-instruct-q6_k.gguf

Problem description & steps to reproduce

When I run

.\llama-server.exe -m qwen2.5-coder-32b-instruct.gguf -ngl 99 --port 5000 -fa -c 32000 -md qwen2.5-coder-1.5b-instruct-q6_k.gguf -ngld 99 -ctk q8_0 -ctv q8_0 -a qwen2.5-coder-32b --log-timestamps -devd 'CUDA0' -ts '3,10' --draft 16 --draft-p-min 0.4 -nocb

and use Cline in VS Code, then it sends multiple requests at once (I suppose, not sure) and server exit with error:

slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 32000, n_keep = 0, n_prompt_tokens = 7056
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.290249
llama_decode_internal: invalid token[0] = -657584439
llama_decode: failed to decode, ret = -1
llama_get_logits_ith: invalid logits id 0, reason: batch.logits[0] != true

But sometimes it doesn't fail, but output is corrupted:

theThe task is to add mocked API requests to the application....

Here is doubled theThe at the begin of response.

First Bad Commit

No response

Relevant log output

.\llama-server.exe -m ..\aphrodite\qwen2.5-coder-32b-instruct.gguf -ngl 99 --port 5000 -fa -c 32000 -md ..\aphrodite\qwen2.5-coder-1.5b-instruct-q6_k.gguf -ngld 99 -ctk q8_0 -ctv q8_0 -a qwen2.5-coder-32b --log-timestamps -devd 'CUDA0' -ts '3,10' --draft 16 --draft-p-min 0.4
ggml_cuda_init: GGML_CUDA_FORCE_MMQ:    no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
  Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
  Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
build: 1 (46c69e0) with MSVC 19.29.30157.0 for
system info: n_threads = 12, n_threads_batch = 12, total_threads = 24

system_info: n_threads = 12 (n_threads_batch = 12) / 24 | CUDA : ARCHS = 520,610,700,750 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | AARCH64_REPACK = 1 |

main: HTTP server is listening, hostname: 127.0.0.1, port: 5000, http threads: 23
main: loading model
srv    load_model: loading model '..\aphrodite\qwen2.5-coder-32b-instruct.gguf'
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 4090) - 22994 MiB free
llama_load_model_from_file: using device CUDA1 (NVIDIA GeForce RTX 3090) - 23306 MiB free
llama_model_loader: loaded meta data with 38 key-value pairs and 771 tensors from ..\aphrodite\qwen2.5-coder-32b-instruct.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen2.5 Coder 32B Instruct
llama_model_loader: - kv   3:                           general.finetune str              = Instruct
llama_model_loader: - kv   4:                           general.basename str              = Qwen2.5-Coder
llama_model_loader: - kv   5:                         general.size_label str              = 32B
llama_model_loader: - kv   6:                            general.license str              = apache-2.0
llama_model_loader: - kv   7:                       general.license.link str              = https://huggingface.co/Qwen/Qwen2.5-C...
llama_model_loader: - kv   8:                   general.base_model.count u32              = 1
llama_model_loader: - kv   9:                  general.base_model.0.name str              = Qwen2.5 Coder 32B
llama_model_loader: - kv  10:          general.base_model.0.organization str              = Qwen
llama_model_loader: - kv  11:              general.base_model.0.repo_url str              = https://huggingface.co/Qwen/Qwen2.5-C...
llama_model_loader: - kv  12:                               general.tags arr[str,6]       = ["code", "codeqwen", "chat", "qwen", ...
llama_model_loader: - kv  13:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv  14:                          qwen2.block_count u32              = 64
llama_model_loader: - kv  15:                       qwen2.context_length u32              = 32768
llama_model_loader: - kv  16:                     qwen2.embedding_length u32              = 5120
llama_model_loader: - kv  17:                  qwen2.feed_forward_length u32              = 27648
llama_model_loader: - kv  18:                 qwen2.attention.head_count u32              = 40
llama_model_loader: - kv  19:              qwen2.attention.head_count_kv u32              = 8
llama_model_loader: - kv  20:                       qwen2.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  21:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  22:                          general.file_type u32              = 18
llama_model_loader: - kv  23:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  24:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  25:                      tokenizer.ggml.tokens arr[str,152064]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  26:                  tokenizer.ggml.token_type arr[i32,152064]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  27:                      tokenizer.ggml.merges arr[str,151387]  = ["─а ─а", "─а─а ─а─а", "i n", "─а t",...
llama_model_loader: - kv  28:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  29:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  30:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  31:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  32:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  33:               general.quantization_version u32              = 2
llama_model_loader: - kv  34:                      quantize.imatrix.file str              = /models_out/Qwen2.5-Coder-32B-Instruc...
llama_model_loader: - kv  35:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav3.txt
llama_model_loader: - kv  36:             quantize.imatrix.entries_count i32              = 448
llama_model_loader: - kv  37:              quantize.imatrix.chunks_count i32              = 128
llama_model_loader: - type  f32:  321 tensors
llama_model_loader: - type q6_K:  450 tensors
llm_load_vocab: special tokens cache size = 22
llm_load_vocab: token to piece cache size = 0.9310 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = qwen2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 152064
llm_load_print_meta: n_merges         = 151387
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 5120
llm_load_print_meta: n_layer          = 64
llm_load_print_meta: n_head           = 40
llm_load_print_meta: n_head_kv        = 8
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 5
llm_load_print_meta: n_embd_k_gqa     = 1024
llm_load_print_meta: n_embd_v_gqa     = 1024
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 27648
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 2
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = ?B
llm_load_print_meta: model ftype      = Q6_K
llm_load_print_meta: model params     = 32.76 B
llm_load_print_meta: model size       = 25.03 GiB (6.56 BPW)
llm_load_print_meta: general.name     = Qwen2.5 Coder 32B Instruct
llm_load_print_meta: BOS token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token        = 151645 '<|im_end|>'
llm_load_print_meta: EOT token        = 151645 '<|im_end|>'
llm_load_print_meta: PAD token        = 151643 '<|endoftext|>'
llm_load_print_meta: LF token         = 148848 '├Д─м'
llm_load_print_meta: FIM PRE token    = 151659 '<|fim_prefix|>'
llm_load_print_meta: FIM SUF token    = 151661 '<|fim_suffix|>'
llm_load_print_meta: FIM MID token    = 151660 '<|fim_middle|>'
llm_load_print_meta: FIM PAD token    = 151662 '<|fim_pad|>'
llm_load_print_meta: FIM REP token    = 151663 '<|repo_name|>'
llm_load_print_meta: FIM SEP token    = 151664 '<|file_sep|>'
llm_load_print_meta: EOG token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOG token        = 151645 '<|im_end|>'
llm_load_print_meta: EOG token        = 151662 '<|fim_pad|>'
llm_load_print_meta: EOG token        = 151663 '<|repo_name|>'
llm_load_print_meta: EOG token        = 151664 '<|file_sep|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 64 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 65/65 layers to GPU
llm_load_tensors:        CUDA0 model buffer size =  5722.68 MiB
llm_load_tensors:        CUDA1 model buffer size = 19303.18 MiB
llm_load_tensors:   CPU_Mapped model buffer size =   609.08 MiB
.................................................................................................
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 32000
llama_new_context_with_model: n_ctx_per_seq = 32000
llama_new_context_with_model: n_batch       = 2048
llama_new_context_with_model: n_ubatch      = 512
llama_new_context_with_model: flash_attn    = 1
llama_new_context_with_model: freq_base     = 1000000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (32000) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
llama_kv_cache_init:      CUDA0 KV buffer size =   996.09 MiB
llama_kv_cache_init:      CUDA1 KV buffer size =  3253.91 MiB
llama_new_context_with_model: KV self size  = 4250.00 MiB, K (q8_0): 2125.00 MiB, V (q8_0): 2125.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.58 MiB
llama_new_context_with_model: pipeline parallelism enabled (n_copies=4)
llama_new_context_with_model:      CUDA0 compute buffer size =   459.26 MiB
llama_new_context_with_model:      CUDA1 compute buffer size =   472.02 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =   260.02 MiB
llama_new_context_with_model: graph nodes  = 1991
llama_new_context_with_model: graph splits = 3
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv    load_model: loading draft model '..\aphrodite\qwen2.5-coder-1.5b-instruct-q6_k.gguf'
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 4090) - 15768 MiB free
llama_model_loader: loaded meta data with 26 key-value pairs and 339 tensors from ..\aphrodite\qwen2.5-coder-1.5b-instruct-q6_k.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Qwen2.5 Coder 1.5B Instruct GGUF
llama_model_loader: - kv   3:                           general.finetune str              = Instruct-GGUF
llama_model_loader: - kv   4:                           general.basename str              = Qwen2.5-Coder
llama_model_loader: - kv   5:                         general.size_label str              = 1.5B
llama_model_loader: - kv   6:                          qwen2.block_count u32              = 28
llama_model_loader: - kv   7:                       qwen2.context_length u32              = 32768
llama_model_loader: - kv   8:                     qwen2.embedding_length u32              = 1536
llama_model_loader: - kv   9:                  qwen2.feed_forward_length u32              = 8960
llama_model_loader: - kv  10:                 qwen2.attention.head_count u32              = 12
llama_model_loader: - kv  11:              qwen2.attention.head_count_kv u32              = 2
llama_model_loader: - kv  12:                       qwen2.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  13:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv  14:                          general.file_type u32              = 18
llama_model_loader: - kv  15:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  16:                         tokenizer.ggml.pre str              = qwen2
llama_model_loader: - kv  17:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  18:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  19:                      tokenizer.ggml.merges arr[str,151387]  = ["─а ─а", "─а─а ─а─а", "i n", "─а t",...
llama_model_loader: - kv  20:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  21:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  22:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  23:               tokenizer.ggml.add_bos_token bool             = false
llama_model_loader: - kv  24:                    tokenizer.chat_template str              = {%- if tools %}\n    {{- '<|im_start|>...
llama_model_loader: - kv  25:               general.quantization_version u32              = 2
llama_model_loader: - type  f32:  141 tensors
llama_model_loader: - type q6_K:  198 tensors
llm_load_vocab: special tokens cache size = 22
llm_load_vocab: token to piece cache size = 0.9310 MB
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = qwen2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 151936
llm_load_print_meta: n_merges         = 151387
llm_load_print_meta: vocab_only       = 0
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 1536
llm_load_print_meta: n_layer          = 28
llm_load_print_meta: n_head           = 12
llm_load_print_meta: n_head_kv        = 2
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_swa            = 0
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 6
llm_load_print_meta: n_embd_k_gqa     = 256
llm_load_print_meta: n_embd_v_gqa     = 256
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 8960
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 2
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: ssm_dt_b_c_rms   = 0
llm_load_print_meta: model type       = 1.5B
llm_load_print_meta: model ftype      = Q6_K
llm_load_print_meta: model params     = 1.78 B
llm_load_print_meta: model size       = 1.36 GiB (6.56 BPW)
llm_load_print_meta: general.name     = Qwen2.5 Coder 1.5B Instruct GGUF
llm_load_print_meta: BOS token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token        = 151645 '<|im_end|>'
llm_load_print_meta: EOT token        = 151645 '<|im_end|>'
llm_load_print_meta: PAD token        = 151643 '<|endoftext|>'
llm_load_print_meta: LF token         = 148848 '├Д─м'
llm_load_print_meta: FIM PRE token    = 151659 '<|fim_prefix|>'
llm_load_print_meta: FIM SUF token    = 151661 '<|fim_suffix|>'
llm_load_print_meta: FIM MID token    = 151660 '<|fim_middle|>'
llm_load_print_meta: FIM PAD token    = 151662 '<|fim_pad|>'
llm_load_print_meta: FIM REP token    = 151663 '<|repo_name|>'
llm_load_print_meta: FIM SEP token    = 151664 '<|file_sep|>'
llm_load_print_meta: EOG token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOG token        = 151645 '<|im_end|>'
llm_load_print_meta: EOG token        = 151662 '<|fim_pad|>'
llm_load_print_meta: EOG token        = 151663 '<|repo_name|>'
llm_load_print_meta: EOG token        = 151664 '<|file_sep|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 28 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 29/29 layers to GPU
llm_load_tensors:        CUDA0 model buffer size =  1208.11 MiB
llm_load_tensors:   CPU_Mapped model buffer size =   182.57 MiB
...........................................................................
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 32768
llama_new_context_with_model: n_ctx_per_seq = 32768
llama_new_context_with_model: n_batch       = 2048
llama_new_context_with_model: n_ubatch      = 512
llama_new_context_with_model: flash_attn    = 1
llama_new_context_with_model: freq_base     = 1000000.0
llama_new_context_with_model: freq_scale    = 1
llama_kv_cache_init:      CUDA0 KV buffer size =   476.00 MiB
llama_new_context_with_model: KV self size  =  476.00 MiB, K (q8_0):  238.00 MiB, V (q8_0):  238.00 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.58 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   299.75 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    67.01 MiB
llama_new_context_with_model: graph nodes  = 875
llama_new_context_with_model: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv          init: initializing slots, n_slots = 1
llama_new_context_with_model: n_seq_max     = 1
llama_new_context_with_model: n_ctx         = 32000
llama_new_context_with_model: n_ctx_per_seq = 32000
llama_new_context_with_model: n_batch       = 32000
llama_new_context_with_model: n_ubatch      = 512
llama_new_context_with_model: flash_attn    = 1
llama_new_context_with_model: freq_base     = 1000000.0
llama_new_context_with_model: freq_scale    = 1
llama_new_context_with_model: n_ctx_per_seq (32000) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
llama_kv_cache_init:      CUDA0 KV buffer size =   464.84 MiB
llama_new_context_with_model: KV self size  =  464.84 MiB, K (q8_0):  232.42 MiB, V (q8_0):  232.42 MiB
llama_new_context_with_model:  CUDA_Host  output buffer size =     0.58 MiB
llama_new_context_with_model:      CUDA0 compute buffer size =   299.75 MiB
llama_new_context_with_model:  CUDA_Host compute buffer size =    65.51 MiB
llama_new_context_with_model: graph nodes  = 875
llama_new_context_with_model: graph splits = 2
slot         init: id  0 | task -1 | new slot n_ctx_slot = 32000
main: model loaded
main: chat template, built_in: 1, chat_example: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://127.0.0.1:5000 - starting the main loop
srv  update_slots: all slots are idle
slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 32000, n_keep = 0, n_prompt_tokens = 7056
slot update_slots: id  0 | task 0 | kv cache rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.290249
llama_decode_internal: invalid token[0] = -657584439
llama_decode: failed to decode, ret = -1
llama_get_logits_ith: invalid logits id 0, reason: batch.logits[0] != true

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions