-
Notifications
You must be signed in to change notification settings - Fork 13.3k
Closed
Labels
Description
Name and Version
.\llama-cli.exe --version
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
version: 1 (46c69e0)
built with MSVC 19.29.30157.0 for
Operating systems
Windows
GGML backends
CUDA
Hardware
Ryzen 7900X, 128G DDR5, RTX 3090 + RTX 4090
Models
Main - qwen2.5-coder-32b-instruct-q6_k.gguf
Draft - qwen2.5-coder-1.5b-instruct-q6_k.gguf
Problem description & steps to reproduce
When I run
.\llama-server.exe -m qwen2.5-coder-32b-instruct.gguf -ngl 99 --port 5000 -fa -c 32000 -md qwen2.5-coder-1.5b-instruct-q6_k.gguf -ngld 99 -ctk q8_0 -ctv q8_0 -a qwen2.5-coder-32b --log-timestamps -devd 'CUDA0' -ts '3,10' --draft 16 --draft-p-min 0.4 -nocb
and use Cline in VS Code, then it sends multiple requests at once (I suppose, not sure) and server exit with error:
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 32000, n_keep = 0, n_prompt_tokens = 7056
slot update_slots: id 0 | task 0 | kv cache rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.290249
llama_decode_internal: invalid token[0] = -657584439
llama_decode: failed to decode, ret = -1
llama_get_logits_ith: invalid logits id 0, reason: batch.logits[0] != true
But sometimes it doesn't fail, but output is corrupted:
theThe task is to add mocked API requests to the application....
Here is doubled theThe
at the begin of response.
First Bad Commit
No response
Relevant log output
.\llama-server.exe -m ..\aphrodite\qwen2.5-coder-32b-instruct.gguf -ngl 99 --port 5000 -fa -c 32000 -md ..\aphrodite\qwen2.5-coder-1.5b-instruct-q6_k.gguf -ngld 99 -ctk q8_0 -ctv q8_0 -a qwen2.5-coder-32b --log-timestamps -devd 'CUDA0' -ts '3,10' --draft 16 --draft-p-min 0.4
ggml_cuda_init: GGML_CUDA_FORCE_MMQ: no
ggml_cuda_init: GGML_CUDA_FORCE_CUBLAS: no
ggml_cuda_init: found 2 CUDA devices:
Device 0: NVIDIA GeForce RTX 4090, compute capability 8.9, VMM: yes
Device 1: NVIDIA GeForce RTX 3090, compute capability 8.6, VMM: yes
build: 1 (46c69e0) with MSVC 19.29.30157.0 for
system info: n_threads = 12, n_threads_batch = 12, total_threads = 24
system_info: n_threads = 12 (n_threads_batch = 12) / 24 | CUDA : ARCHS = 520,610,700,750 | USE_GRAPHS = 1 | PEER_MAX_BATCH_SIZE = 128 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | LLAMAFILE = 1 | AARCH64_REPACK = 1 |
main: HTTP server is listening, hostname: 127.0.0.1, port: 5000, http threads: 23
main: loading model
srv load_model: loading model '..\aphrodite\qwen2.5-coder-32b-instruct.gguf'
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 4090) - 22994 MiB free
llama_load_model_from_file: using device CUDA1 (NVIDIA GeForce RTX 3090) - 23306 MiB free
llama_model_loader: loaded meta data with 38 key-value pairs and 771 tensors from ..\aphrodite\qwen2.5-coder-32b-instruct.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen2.5 Coder 32B Instruct
llama_model_loader: - kv 3: general.finetune str = Instruct
llama_model_loader: - kv 4: general.basename str = Qwen2.5-Coder
llama_model_loader: - kv 5: general.size_label str = 32B
llama_model_loader: - kv 6: general.license str = apache-2.0
llama_model_loader: - kv 7: general.license.link str = https://huggingface.co/Qwen/Qwen2.5-C...
llama_model_loader: - kv 8: general.base_model.count u32 = 1
llama_model_loader: - kv 9: general.base_model.0.name str = Qwen2.5 Coder 32B
llama_model_loader: - kv 10: general.base_model.0.organization str = Qwen
llama_model_loader: - kv 11: general.base_model.0.repo_url str = https://huggingface.co/Qwen/Qwen2.5-C...
llama_model_loader: - kv 12: general.tags arr[str,6] = ["code", "codeqwen", "chat", "qwen", ...
llama_model_loader: - kv 13: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 14: qwen2.block_count u32 = 64
llama_model_loader: - kv 15: qwen2.context_length u32 = 32768
llama_model_loader: - kv 16: qwen2.embedding_length u32 = 5120
llama_model_loader: - kv 17: qwen2.feed_forward_length u32 = 27648
llama_model_loader: - kv 18: qwen2.attention.head_count u32 = 40
llama_model_loader: - kv 19: qwen2.attention.head_count_kv u32 = 8
llama_model_loader: - kv 20: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 21: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 22: general.file_type u32 = 18
llama_model_loader: - kv 23: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 24: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 25: tokenizer.ggml.tokens arr[str,152064] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 26: tokenizer.ggml.token_type arr[i32,152064] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 27: tokenizer.ggml.merges arr[str,151387] = ["─а ─а", "─а─а ─а─а", "i n", "─а t",...
llama_model_loader: - kv 28: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 29: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 31: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 32: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 33: general.quantization_version u32 = 2
llama_model_loader: - kv 34: quantize.imatrix.file str = /models_out/Qwen2.5-Coder-32B-Instruc...
llama_model_loader: - kv 35: quantize.imatrix.dataset str = /training_dir/calibration_datav3.txt
llama_model_loader: - kv 36: quantize.imatrix.entries_count i32 = 448
llama_model_loader: - kv 37: quantize.imatrix.chunks_count i32 = 128
llama_model_loader: - type f32: 321 tensors
llama_model_loader: - type q6_K: 450 tensors
llm_load_vocab: special tokens cache size = 22
llm_load_vocab: token to piece cache size = 0.9310 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 152064
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 5120
llm_load_print_meta: n_layer = 64
llm_load_print_meta: n_head = 40
llm_load_print_meta: n_head_kv = 8
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 5
llm_load_print_meta: n_embd_k_gqa = 1024
llm_load_print_meta: n_embd_v_gqa = 1024
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 27648
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = Q6_K
llm_load_print_meta: model params = 32.76 B
llm_load_print_meta: model size = 25.03 GiB (6.56 BPW)
llm_load_print_meta: general.name = Qwen2.5 Coder 32B Instruct
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token = 151645 '<|im_end|>'
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
llm_load_print_meta: PAD token = 151643 '<|endoftext|>'
llm_load_print_meta: LF token = 148848 '├Д─м'
llm_load_print_meta: FIM PRE token = 151659 '<|fim_prefix|>'
llm_load_print_meta: FIM SUF token = 151661 '<|fim_suffix|>'
llm_load_print_meta: FIM MID token = 151660 '<|fim_middle|>'
llm_load_print_meta: FIM PAD token = 151662 '<|fim_pad|>'
llm_load_print_meta: FIM REP token = 151663 '<|repo_name|>'
llm_load_print_meta: FIM SEP token = 151664 '<|file_sep|>'
llm_load_print_meta: EOG token = 151643 '<|endoftext|>'
llm_load_print_meta: EOG token = 151645 '<|im_end|>'
llm_load_print_meta: EOG token = 151662 '<|fim_pad|>'
llm_load_print_meta: EOG token = 151663 '<|repo_name|>'
llm_load_print_meta: EOG token = 151664 '<|file_sep|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 64 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 65/65 layers to GPU
llm_load_tensors: CUDA0 model buffer size = 5722.68 MiB
llm_load_tensors: CUDA1 model buffer size = 19303.18 MiB
llm_load_tensors: CPU_Mapped model buffer size = 609.08 MiB
.................................................................................................
llama_new_context_with_model: n_seq_max = 1
llama_new_context_with_model: n_ctx = 32000
llama_new_context_with_model: n_ctx_per_seq = 32000
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: n_ctx_per_seq (32000) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
llama_kv_cache_init: CUDA0 KV buffer size = 996.09 MiB
llama_kv_cache_init: CUDA1 KV buffer size = 3253.91 MiB
llama_new_context_with_model: KV self size = 4250.00 MiB, K (q8_0): 2125.00 MiB, V (q8_0): 2125.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.58 MiB
llama_new_context_with_model: pipeline parallelism enabled (n_copies=4)
llama_new_context_with_model: CUDA0 compute buffer size = 459.26 MiB
llama_new_context_with_model: CUDA1 compute buffer size = 472.02 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 260.02 MiB
llama_new_context_with_model: graph nodes = 1991
llama_new_context_with_model: graph splits = 3
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv load_model: loading draft model '..\aphrodite\qwen2.5-coder-1.5b-instruct-q6_k.gguf'
llama_load_model_from_file: using device CUDA0 (NVIDIA GeForce RTX 4090) - 15768 MiB free
llama_model_loader: loaded meta data with 26 key-value pairs and 339 tensors from ..\aphrodite\qwen2.5-coder-1.5b-instruct-q6_k.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = qwen2
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Qwen2.5 Coder 1.5B Instruct GGUF
llama_model_loader: - kv 3: general.finetune str = Instruct-GGUF
llama_model_loader: - kv 4: general.basename str = Qwen2.5-Coder
llama_model_loader: - kv 5: general.size_label str = 1.5B
llama_model_loader: - kv 6: qwen2.block_count u32 = 28
llama_model_loader: - kv 7: qwen2.context_length u32 = 32768
llama_model_loader: - kv 8: qwen2.embedding_length u32 = 1536
llama_model_loader: - kv 9: qwen2.feed_forward_length u32 = 8960
llama_model_loader: - kv 10: qwen2.attention.head_count u32 = 12
llama_model_loader: - kv 11: qwen2.attention.head_count_kv u32 = 2
llama_model_loader: - kv 12: qwen2.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 13: qwen2.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 14: general.file_type u32 = 18
llama_model_loader: - kv 15: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 16: tokenizer.ggml.pre str = qwen2
llama_model_loader: - kv 17: tokenizer.ggml.tokens arr[str,151936] = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv 18: tokenizer.ggml.token_type arr[i32,151936] = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv 19: tokenizer.ggml.merges arr[str,151387] = ["─а ─а", "─а─а ─а─а", "i n", "─а t",...
llama_model_loader: - kv 20: tokenizer.ggml.eos_token_id u32 = 151645
llama_model_loader: - kv 21: tokenizer.ggml.padding_token_id u32 = 151643
llama_model_loader: - kv 22: tokenizer.ggml.bos_token_id u32 = 151643
llama_model_loader: - kv 23: tokenizer.ggml.add_bos_token bool = false
llama_model_loader: - kv 24: tokenizer.chat_template str = {%- if tools %}\n {{- '<|im_start|>...
llama_model_loader: - kv 25: general.quantization_version u32 = 2
llama_model_loader: - type f32: 141 tensors
llama_model_loader: - type q6_K: 198 tensors
llm_load_vocab: special tokens cache size = 22
llm_load_vocab: token to piece cache size = 0.9310 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = qwen2
llm_load_print_meta: vocab type = BPE
llm_load_print_meta: n_vocab = 151936
llm_load_print_meta: n_merges = 151387
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 32768
llm_load_print_meta: n_embd = 1536
llm_load_print_meta: n_layer = 28
llm_load_print_meta: n_head = 12
llm_load_print_meta: n_head_kv = 2
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 6
llm_load_print_meta: n_embd_k_gqa = 256
llm_load_print_meta: n_embd_v_gqa = 256
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 8960
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 2
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 32768
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 1.5B
llm_load_print_meta: model ftype = Q6_K
llm_load_print_meta: model params = 1.78 B
llm_load_print_meta: model size = 1.36 GiB (6.56 BPW)
llm_load_print_meta: general.name = Qwen2.5 Coder 1.5B Instruct GGUF
llm_load_print_meta: BOS token = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token = 151645 '<|im_end|>'
llm_load_print_meta: EOT token = 151645 '<|im_end|>'
llm_load_print_meta: PAD token = 151643 '<|endoftext|>'
llm_load_print_meta: LF token = 148848 '├Д─м'
llm_load_print_meta: FIM PRE token = 151659 '<|fim_prefix|>'
llm_load_print_meta: FIM SUF token = 151661 '<|fim_suffix|>'
llm_load_print_meta: FIM MID token = 151660 '<|fim_middle|>'
llm_load_print_meta: FIM PAD token = 151662 '<|fim_pad|>'
llm_load_print_meta: FIM REP token = 151663 '<|repo_name|>'
llm_load_print_meta: FIM SEP token = 151664 '<|file_sep|>'
llm_load_print_meta: EOG token = 151643 '<|endoftext|>'
llm_load_print_meta: EOG token = 151645 '<|im_end|>'
llm_load_print_meta: EOG token = 151662 '<|fim_pad|>'
llm_load_print_meta: EOG token = 151663 '<|repo_name|>'
llm_load_print_meta: EOG token = 151664 '<|file_sep|>'
llm_load_print_meta: max token length = 256
llm_load_tensors: offloading 28 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 29/29 layers to GPU
llm_load_tensors: CUDA0 model buffer size = 1208.11 MiB
llm_load_tensors: CPU_Mapped model buffer size = 182.57 MiB
...........................................................................
llama_new_context_with_model: n_seq_max = 1
llama_new_context_with_model: n_ctx = 32768
llama_new_context_with_model: n_ctx_per_seq = 32768
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init: CUDA0 KV buffer size = 476.00 MiB
llama_new_context_with_model: KV self size = 476.00 MiB, K (q8_0): 238.00 MiB, V (q8_0): 238.00 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.58 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 299.75 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 67.01 MiB
llama_new_context_with_model: graph nodes = 875
llama_new_context_with_model: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv init: initializing slots, n_slots = 1
llama_new_context_with_model: n_seq_max = 1
llama_new_context_with_model: n_ctx = 32000
llama_new_context_with_model: n_ctx_per_seq = 32000
llama_new_context_with_model: n_batch = 32000
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 1
llama_new_context_with_model: freq_base = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: n_ctx_per_seq (32000) < n_ctx_train (32768) -- the full capacity of the model will not be utilized
llama_kv_cache_init: CUDA0 KV buffer size = 464.84 MiB
llama_new_context_with_model: KV self size = 464.84 MiB, K (q8_0): 232.42 MiB, V (q8_0): 232.42 MiB
llama_new_context_with_model: CUDA_Host output buffer size = 0.58 MiB
llama_new_context_with_model: CUDA0 compute buffer size = 299.75 MiB
llama_new_context_with_model: CUDA_Host compute buffer size = 65.51 MiB
llama_new_context_with_model: graph nodes = 875
llama_new_context_with_model: graph splits = 2
slot init: id 0 | task -1 | new slot n_ctx_slot = 32000
main: model loaded
main: chat template, built_in: 1, chat_example: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://127.0.0.1:5000 - starting the main loop
srv update_slots: all slots are idle
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 32000, n_keep = 0, n_prompt_tokens = 7056
slot update_slots: id 0 | task 0 | kv cache rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.290249
llama_decode_internal: invalid token[0] = -657584439
llama_decode: failed to decode, ret = -1
llama_get_logits_ith: invalid logits id 0, reason: batch.logits[0] != true