Skip to content

Eval bug: Nemotron-H-47B-Reasoning always reprocesses prompt (even after #16382) #16416

@aoleg

Description

@aoleg

Name and Version

llama-cli --version
load_backend: loaded RPC backend from s:\llm\llama.vulkan\ggml-rpc.dll
ggml_vulkan: Found 2 Vulkan devices:
ggml_vulkan: 0 = NVIDIA GeForce RTX 5090 (NVIDIA) | uma: 0 | fp16: 1 | bf16: 1 | warp size: 32 | shared memory: 49152 | int dot: 1 | matrix cores: NV_coopmat2
ggml_vulkan: 1 = Intel(R) UHD Graphics 770 (Intel Corporation) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none
load_backend: loaded Vulkan backend from s:\llm\llama.vulkan\ggml-vulkan.dll
load_backend: loaded CPU backend from s:\llm\llama.vulkan\ggml-cpu-alderlake.dll
version: 6686 (128d522)
built with clang version 19.1.5 for x86_64-pc-windows-msvc

Operating systems

Windows

GGML backends

Vulkan

Hardware

Intel i9-12900K + 1x RTX 5090 32GB

Models

bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf
https://huggingface.co/bartowski/nvidia_Nemotron-H-47B-Reasoning-128K-GGUF

Problem description & steps to reproduce

PR #16382 was supposed to fix prompt reprocessing for hybrid models, but Nemotron-H-47B-Reasoning is still reprocessing every time; context caching does not seem to be working. I originally opened this issue in #16033; it was merged with #15677, but PR #16382 does not seem to fix it for Nemotron-H-47B.

When I run llama-server, it does not appear to respect the values for kv-cache; moreover, it reprocesses the prompt every time, which gets quite long in the end.

Particularly unrealistic values for kv cache (32768 context size):
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 32768
llama_context: n_ctx_per_seq = 32768
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = enabled
llama_context: kv_unified = false
llama_context: freq_base = 10000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (32768) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
llama_context: Vulkan_Host output buffer size = 0.50 MiB
llama_kv_cache: Vulkan0 KV buffer size = 640.00 MiB
llama_kv_cache: size = 640.00 MiB ( 32768 cells, 5 layers, 1/1 seqs), K (f16): 320.00 MiB, V (f16): 320.00 MiB
llama_memory_recurrent: Vulkan0 RS buffer size = 730.55 MiB
llama_memory_recurrent: size = 730.55 MiB ( 1 cells, 98 layers, 1 seqs), R (f32): 10.55 MiB, S (f32): 720.00 MiB
llama_context: Vulkan0 compute buffer size = 304.23 MiB
llama_context: Vulkan_Host compute buffer size = 248.36 MiB
llama_context: graph nodes = 2750
llama_context: graph splits = 182

And reprocessing every time despite saving context (here, I simply re-generated the reply, which normally causes no reprocessing at all):
slot update_slots: id 0 | task 0 | saved context checkpoint 1 of 3 (pos_min = 8508, pos_max = 8508, size = 730.548 MiB)
...
slot update_slots: id 0 | task 169 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id 0 | task 169 | n_past = 8509, cache_tokens.size() = 8672, seq_id = 0, pos_min = 8671, n_swa = 1
slot update_slots: id 0 | task 169 | forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see #13194 (comment))

main: server is listening on http://127.0.0.1:8081 - starting the main loop
srv update_slots: all slots are idle
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id 0 | task -1 | selected slot by LRU, t_last = -1
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id 0 | task 0 | n_past = 0, memory_seq_rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.240686
slot update_slots: id 0 | task 0 | n_past = 2048, memory_seq_rm [2048, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 4096, n_tokens = 2048, progress = 0.481373
slot update_slots: id 0 | task 0 | n_past = 4096, memory_seq_rm [4096, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 6144, n_tokens = 2048, progress = 0.722059
slot update_slots: id 0 | task 0 | n_past = 6144, memory_seq_rm [6144, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 8192, n_tokens = 2048, progress = 0.962745
slot update_slots: id 0 | task 0 | n_past = 8192, memory_seq_rm [8192, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 8509, n_tokens = 317, progress = 1.000000
slot update_slots: id 0 | task 0 | prompt done, n_past = 8509, n_tokens = 317
slot update_slots: id 0 | task 0 | saved context checkpoint 1 of 3 (pos_min = 8508, pos_max = 8508, size = 730.548 MiB)
slot release: id 0 | task 0 | stop processing: n_past = 8672, truncated = 0
slot print_timing: id 0 | task 0 |
prompt eval time = 172848.79 ms / 8509 tokens ( 20.31 ms per token, 49.23 tokens per second)
eval time = 58931.25 ms / 164 tokens ( 359.34 ms per token, 2.78 tokens per second)
total time = 231780.04 ms / 8673 tokens
srv update_slots: all slots are idle
srv log_server_r: request: POST /completion 127.0.0.1 200
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id 0 | task 0 | selected slot by lcs similarity, lcs_len = 8509, similarity = 0.981 (> 0.100 thold)
slot launch_slot_: id 0 | task 169 | processing task
slot update_slots: id 0 | task 169 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id 0 | task 169 | n_past = 8509, cache_tokens.size() = 8672, seq_id = 0, pos_min = 8671, n_swa = 1
slot update_slots: id 0 | task 169 | forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see https://github.com//pull/13194#issuecomment-2868343055)
slot update_slots: id 0 | task 169 | n_past = 0, memory_seq_rm [0, end)
slot update_slots: id 0 | task 169 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.240686

First Bad Commit

No response

Relevant log output

s:\llm\llama.vulkan>llama-server     --model "s:\lmstudio\models\bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf"     --alias "nvidia/Nemotron-H-47B-Reasoning-128K-Q4_K_M"     --ctx-size 32768     -fa on     -ctk f16 -ctv f16     -ngl 999     --host 127.0.0.1     --port 8081     --batch-size 2048     --no-mmap
load_backend: loaded RPC backend from s:\llm\llama.vulkan\ggml-rpc.dll
ggml_vulkan: Found 2 Vulkan devices:
ggml_vulkan: 0 = NVIDIA GeForce RTX 5090 (NVIDIA) | uma: 0 | fp16: 1 | bf16: 1 | warp size: 32 | shared memory: 49152 | int dot: 1 | matrix cores: NV_coopmat2
ggml_vulkan: 1 = Intel(R) UHD Graphics 770 (Intel Corporation) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none
load_backend: loaded Vulkan backend from s:\llm\llama.vulkan\ggml-vulkan.dll
load_backend: loaded CPU backend from s:\llm\llama.vulkan\ggml-cpu-alderlake.dll
build: 6686 (128d522c) with clang version 19.1.5 for x86_64-pc-windows-msvc
system info: n_threads = 16, n_threads_batch = 16, total_threads = 24

system_info: n_threads = 16 (n_threads_batch = 16) / 24 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |

main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8081, http threads: 23
main: loading model
srv    load_model: loading model 's:\lmstudio\models\bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf'
llama_model_load_from_file_impl: using device Vulkan0 (NVIDIA GeForce RTX 5090) (0000:01:00.0) - 31333 MiB free
llama_model_loader: loaded meta data with 48 key-value pairs and 577 tensors from s:\lmstudio\models\bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = nemotron_h
llama_model_loader: - kv   1:                               general.type str              = model
llama_model_loader: - kv   2:                               general.name str              = Nemotron H 47B Reasoning 128K
llama_model_loader: - kv   3:                           general.finetune str              = Reasoning-128k
llama_model_loader: - kv   4:                           general.basename str              = Nemotron-H
llama_model_loader: - kv   5:                         general.size_label str              = 47B
llama_model_loader: - kv   6:                            general.license str              = other
llama_model_loader: - kv   7:                       general.license.name str              = nvidia-internal-scientific-research-a...
llama_model_loader: - kv   8:                       general.license.link str              = https://www.nvidia.com/en-us/agreemen...
llama_model_loader: - kv   9:                               general.tags arr[str,3]       = ["nvidia", "pytorch", "text-generation"]
llama_model_loader: - kv  10:                          general.languages arr[str,1]       = ["en"]
llama_model_loader: - kv  11:                     nemotron_h.block_count u32              = 98
llama_model_loader: - kv  12:                  nemotron_h.context_length u32              = 1048576
llama_model_loader: - kv  13:                nemotron_h.embedding_length u32              = 8192
llama_model_loader: - kv  14:             nemotron_h.feed_forward_length arr[i32,98]      = [0, 30720, 0, 30720, 0, 30720, 0, 307...
llama_model_loader: - kv  15:            nemotron_h.attention.head_count u32              = 64
llama_model_loader: - kv  16:         nemotron_h.attention.head_count_kv arr[i32,98]      = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
llama_model_loader: - kv  17: nemotron_h.attention.layer_norm_rms_epsilon f32              = 0.000010
llama_model_loader: - kv  18:    nemotron_h.attention.layer_norm_epsilon f32              = 0.000010
llama_model_loader: - kv  19:                      nemotron_h.vocab_size u32              = 131072
llama_model_loader: - kv  20:            nemotron_h.rope.dimension_count u32              = 128
llama_model_loader: - kv  21:                 nemotron_h.ssm.conv_kernel u32              = 4
llama_model_loader: - kv  22:                  nemotron_h.ssm.state_size u32              = 256
llama_model_loader: - kv  23:                 nemotron_h.ssm.group_count u32              = 8
llama_model_loader: - kv  24:                  nemotron_h.ssm.inner_size u32              = 16384
llama_model_loader: - kv  25:              nemotron_h.ssm.time_step_rank u32              = 256
llama_model_loader: - kv  26:          nemotron_h.rope.scaling.finetuned bool             = false
llama_model_loader: - kv  27:            nemotron_h.attention.key_length u32              = 128
llama_model_loader: - kv  28:          nemotron_h.attention.value_length u32              = 128
llama_model_loader: - kv  29:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  30:                         tokenizer.ggml.pre str              = tekken
llama_model_loader: - kv  31:                      tokenizer.ggml.tokens arr[str,131072]  = ["<unk>", "<s>", "</s>", "[INST]", "[...
llama_model_loader: - kv  32:                  tokenizer.ggml.token_type arr[i32,131072]  = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv  33:                      tokenizer.ggml.merges arr[str,269443]  = ["─а ─а", "─а t", "e r", "i n", "─а ─...
llama_model_loader: - kv  34:                tokenizer.ggml.eos_token_id u32              = 11
llama_model_loader: - kv  35:            tokenizer.ggml.unknown_token_id u32              = 0
llama_model_loader: - kv  36:                tokenizer.ggml.bos_token_id u32              = 1
llama_model_loader: - kv  37:            tokenizer.ggml.padding_token_id u32              = 0
llama_model_loader: - kv  38:               tokenizer.ggml.add_bos_token bool             = true
llama_model_loader: - kv  39:               tokenizer.ggml.add_sep_token bool             = false
llama_model_loader: - kv  40:               tokenizer.ggml.add_eos_token bool             = false
llama_model_loader: - kv  41:                    tokenizer.chat_template str              = {{ '<SPECIAL_10>System\n' }}{%- if mes...
llama_model_loader: - kv  42:               general.quantization_version u32              = 2
llama_model_loader: - kv  43:                          general.file_type u32              = 15
llama_model_loader: - kv  44:                      quantize.imatrix.file str              = /models_out/Nemotron-H-47B-Reasoning-...
llama_model_loader: - kv  45:                   quantize.imatrix.dataset str              = /training_dir/calibration_datav5.txt
llama_model_loader: - kv  46:             quantize.imatrix.entries_count u32              = 206
llama_model_loader: - kv  47:              quantize.imatrix.chunks_count u32              = 822
llama_model_loader: - type  f32:  369 tensors
llama_model_loader: - type q4_K:  181 tensors
llama_model_loader: - type q6_K:   27 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type   = Q4_K - Medium
print_info: file size   = 26.24 GiB (4.82 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: printing all EOG tokens:
load:   - 11 ('<SPECIAL_11>')
load: special tokens cache size = 1000
load: token to piece cache size = 0.8499 MB
print_info: arch             = nemotron_h
print_info: vocab_only       = 0
print_info: n_ctx_train      = 1048576
print_info: n_embd           = 8192
print_info: n_layer          = 98
print_info: n_head           = 64
print_info: n_head_kv        = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: n_rot            = 128
print_info: n_swa            = 0
print_info: is_swa_any       = 0
print_info: n_embd_head_k    = 128
print_info: n_embd_head_v    = 128
print_info: n_gqa            = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: n_embd_k_gqa     = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: n_embd_v_gqa     = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: f_norm_eps       = 0.0e+00
print_info: f_norm_rms_eps   = 1.0e-05
print_info: f_clamp_kqv      = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale    = 0.0e+00
print_info: f_attn_scale     = 0.0e+00
print_info: n_ff             = [0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 30720, 30720, 0, 0, 30720, 30720, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720]
print_info: n_expert         = 0
print_info: n_expert_used    = 0
print_info: causal attn      = 1
print_info: pooling type     = 0
print_info: rope type        = -1
print_info: rope scaling     = linear
print_info: freq_base_train  = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn  = 1048576
print_info: rope_finetuned   = unknown
print_info: ssm_d_conv       = 4
print_info: ssm_d_inner      = 16384
print_info: ssm_d_state      = 256
print_info: ssm_dt_rank      = 256
print_info: ssm_n_group      = 8
print_info: ssm_dt_b_c_rms   = 0
print_info: model type       = ?B
print_info: model params     = 46.79 B
print_info: general.name     = Nemotron H 47B Reasoning 128K
print_info: vocab type       = BPE
print_info: n_vocab          = 131072
print_info: n_merges         = 269443
print_info: BOS token        = 1 '<s>'
print_info: EOS token        = 11 '<SPECIAL_11>'
print_info: UNK token        = 0 '<unk>'
print_info: PAD token        = 0 '<unk>'
print_info: LF token         = 1010 '─К'
print_info: EOG token        = 11 '<SPECIAL_11>'
print_info: max token length = 150
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors: offloading 98 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 99/99 layers to GPU
load_tensors:      Vulkan0 model buffer size = 26284.26 MiB
load_tensors:  Vulkan_Host model buffer size =   576.00 MiB
load_tensors:          CPU model buffer size =    14.11 MiB
.................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max     = 1
llama_context: n_ctx         = 32768
llama_context: n_ctx_per_seq = 32768
llama_context: n_batch       = 2048
llama_context: n_ubatch      = 512
llama_context: causal_attn   = 1
llama_context: flash_attn    = enabled
llama_context: kv_unified    = false
llama_context: freq_base     = 10000.0
llama_context: freq_scale    = 1
llama_context: n_ctx_per_seq (32768) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
llama_context: Vulkan_Host  output buffer size =     0.50 MiB
llama_kv_cache:    Vulkan0 KV buffer size =   640.00 MiB
llama_kv_cache: size =  640.00 MiB ( 32768 cells,   5 layers,  1/1 seqs), K (f16):  320.00 MiB, V (f16):  320.00 MiB
llama_memory_recurrent:    Vulkan0 RS buffer size =   730.55 MiB
llama_memory_recurrent: size =  730.55 MiB (     1 cells,  98 layers,  1 seqs), R (f32):   10.55 MiB, S (f32):  720.00 MiB
llama_context:    Vulkan0 compute buffer size =   304.23 MiB
llama_context: Vulkan_Host compute buffer size =   248.36 MiB
llama_context: graph nodes  = 2750
llama_context: graph splits = 182
common_init_from_params: added <SPECIAL_11> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 32768
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv    load_model: load_model: Chat template parsing error: this custom template is not supported, try using --jinja
srv    load_model: load_model: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses
srv          init: initializing slots, n_slots = 1
slot         init: id  0 | task -1 | new slot n_ctx_slot = 32768
srv          init: Enable thinking? 0
main: model loaded
main: chat template, chat_template: {%- for message in messages -%}
  {{- '<|im_start|>' + message.role + '
' + message.content + '<|im_end|>
' -}}
{%- endfor -%}
{%- if add_generation_prompt -%}
  {{- '<|im_start|>assistant
' -}}
{%- endif -%}, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://127.0.0.1:8081 - starting the main loop
srv  update_slots: all slots are idle
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id  0 | task -1 | selected slot by LRU, t_last = -1
slot launch_slot_: id  0 | task 0 | processing task
slot update_slots: id  0 | task 0 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id  0 | task 0 | n_past = 0, memory_seq_rm [0, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.240686
slot update_slots: id  0 | task 0 | n_past = 2048, memory_seq_rm [2048, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 4096, n_tokens = 2048, progress = 0.481373
slot update_slots: id  0 | task 0 | n_past = 4096, memory_seq_rm [4096, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 6144, n_tokens = 2048, progress = 0.722059
slot update_slots: id  0 | task 0 | n_past = 6144, memory_seq_rm [6144, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 8192, n_tokens = 2048, progress = 0.962745
slot update_slots: id  0 | task 0 | n_past = 8192, memory_seq_rm [8192, end)
slot update_slots: id  0 | task 0 | prompt processing progress, n_past = 8509, n_tokens = 317, progress = 1.000000
slot update_slots: id  0 | task 0 | prompt done, n_past = 8509, n_tokens = 317
slot update_slots: id  0 | task 0 | saved context checkpoint 1 of 3 (pos_min = 8508, pos_max = 8508, size = 730.548 MiB)
slot      release: id  0 | task 0 | stop processing: n_past = 8672, truncated = 0
slot print_timing: id  0 | task 0 |
prompt eval time =  172848.79 ms /  8509 tokens (   20.31 ms per token,    49.23 tokens per second)
       eval time =   58931.25 ms /   164 tokens (  359.34 ms per token,     2.78 tokens per second)
      total time =  231780.04 ms /  8673 tokens
srv  update_slots: all slots are idle
srv  log_server_r: request: POST /completion 127.0.0.1 200
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id  0 | task 0 | selected slot by lcs similarity, lcs_len = 8509, similarity = 0.981 (> 0.100 thold)
slot launch_slot_: id  0 | task 169 | processing task
slot update_slots: id  0 | task 169 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id  0 | task 169 | n_past = 8509, cache_tokens.size() = 8672, seq_id = 0, pos_min = 8671, n_swa = 1
slot update_slots: id  0 | task 169 | forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
slot update_slots: id  0 | task 169 | n_past = 0, memory_seq_rm [0, end)
slot update_slots: id  0 | task 169 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.240686
slot update_slots: id  0 | task 169 | n_past = 2048, memory_seq_rm [2048, end)
slot update_slots: id  0 | task 169 | prompt processing progress, n_past = 4096, n_tokens = 2048, progress = 0.481373
slot update_slots: id  0 | task 169 | n_past = 4096, memory_seq_rm [4096, end)
slot update_slots: id  0 | task 169 | prompt processing progress, n_past = 6144, n_tokens = 2048, progress = 0.722059
slot update_slots: id  0 | task 169 | n_past = 6144, memory_seq_rm [6144, end)
slot update_slots: id  0 | task 169 | prompt processing progress, n_past = 8192, n_tokens = 2048, progress = 0.962745
slot update_slots: id  0 | task 169 | n_past = 8192, memory_seq_rm [8192, end)
slot update_slots: id  0 | task 169 | prompt processing progress, n_past = 8509, n_tokens = 317, progress = 1.000000
slot update_slots: id  0 | task 169 | prompt done, n_past = 8509, n_tokens = 317
slot update_slots: id  0 | task 169 | saved context checkpoint 2 of 3 (pos_min = 8508, pos_max = 8508, size = 730.548 MiB)
slot      release: id  0 | task 169 | stop processing: n_past = 8718, truncated = 0
slot print_timing: id  0 | task 169 |
prompt eval time =  174215.46 ms /  8509 tokens (   20.47 ms per token,    48.84 tokens per second)
       eval time =   75767.02 ms /   210 tokens (  360.80 ms per token,     2.77 tokens per second)
      total time =  249982.48 ms /  8719 tokens
srv  update_slots: all slots are idle
srv  log_server_r: request: POST /completion 127.0.0.1 200
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id  0 | task 169 | selected slot by lcs similarity, lcs_len = 8509, similarity = 0.976 (> 0.100 thold)
slot launch_slot_: id  0 | task 384 | processing task
slot update_slots: id  0 | task 384 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id  0 | task 384 | n_past = 8509, cache_tokens.size() = 8718, seq_id = 0, pos_min = 8717, n_swa = 1
slot update_slots: id  0 | task 384 | forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
slot update_slots: id  0 | task 384 | n_past = 0, memory_seq_rm [0, end)
slot update_slots: id  0 | task 384 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.240686

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions