-
Notifications
You must be signed in to change notification settings - Fork 13.3k
Description
Name and Version
llama-cli --version
load_backend: loaded RPC backend from s:\llm\llama.vulkan\ggml-rpc.dll
ggml_vulkan: Found 2 Vulkan devices:
ggml_vulkan: 0 = NVIDIA GeForce RTX 5090 (NVIDIA) | uma: 0 | fp16: 1 | bf16: 1 | warp size: 32 | shared memory: 49152 | int dot: 1 | matrix cores: NV_coopmat2
ggml_vulkan: 1 = Intel(R) UHD Graphics 770 (Intel Corporation) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none
load_backend: loaded Vulkan backend from s:\llm\llama.vulkan\ggml-vulkan.dll
load_backend: loaded CPU backend from s:\llm\llama.vulkan\ggml-cpu-alderlake.dll
version: 6686 (128d522)
built with clang version 19.1.5 for x86_64-pc-windows-msvc
Operating systems
Windows
GGML backends
Vulkan
Hardware
Intel i9-12900K + 1x RTX 5090 32GB
Models
bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf
https://huggingface.co/bartowski/nvidia_Nemotron-H-47B-Reasoning-128K-GGUF
Problem description & steps to reproduce
PR #16382 was supposed to fix prompt reprocessing for hybrid models, but Nemotron-H-47B-Reasoning is still reprocessing every time; context caching does not seem to be working. I originally opened this issue in #16033; it was merged with #15677, but PR #16382 does not seem to fix it for Nemotron-H-47B.
When I run llama-server, it does not appear to respect the values for kv-cache; moreover, it reprocesses the prompt every time, which gets quite long in the end.
Particularly unrealistic values for kv cache (32768 context size):
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 32768
llama_context: n_ctx_per_seq = 32768
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = enabled
llama_context: kv_unified = false
llama_context: freq_base = 10000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (32768) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
llama_context: Vulkan_Host output buffer size = 0.50 MiB
llama_kv_cache: Vulkan0 KV buffer size = 640.00 MiB
llama_kv_cache: size = 640.00 MiB ( 32768 cells, 5 layers, 1/1 seqs), K (f16): 320.00 MiB, V (f16): 320.00 MiB
llama_memory_recurrent: Vulkan0 RS buffer size = 730.55 MiB
llama_memory_recurrent: size = 730.55 MiB ( 1 cells, 98 layers, 1 seqs), R (f32): 10.55 MiB, S (f32): 720.00 MiB
llama_context: Vulkan0 compute buffer size = 304.23 MiB
llama_context: Vulkan_Host compute buffer size = 248.36 MiB
llama_context: graph nodes = 2750
llama_context: graph splits = 182
And reprocessing every time despite saving context (here, I simply re-generated the reply, which normally causes no reprocessing at all):
slot update_slots: id 0 | task 0 | saved context checkpoint 1 of 3 (pos_min = 8508, pos_max = 8508, size = 730.548 MiB)
...
slot update_slots: id 0 | task 169 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id 0 | task 169 | n_past = 8509, cache_tokens.size() = 8672, seq_id = 0, pos_min = 8671, n_swa = 1
slot update_slots: id 0 | task 169 | forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see #13194 (comment))
main: server is listening on http://127.0.0.1:8081 - starting the main loop
srv update_slots: all slots are idle
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id 0 | task -1 | selected slot by LRU, t_last = -1
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id 0 | task 0 | n_past = 0, memory_seq_rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.240686
slot update_slots: id 0 | task 0 | n_past = 2048, memory_seq_rm [2048, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 4096, n_tokens = 2048, progress = 0.481373
slot update_slots: id 0 | task 0 | n_past = 4096, memory_seq_rm [4096, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 6144, n_tokens = 2048, progress = 0.722059
slot update_slots: id 0 | task 0 | n_past = 6144, memory_seq_rm [6144, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 8192, n_tokens = 2048, progress = 0.962745
slot update_slots: id 0 | task 0 | n_past = 8192, memory_seq_rm [8192, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 8509, n_tokens = 317, progress = 1.000000
slot update_slots: id 0 | task 0 | prompt done, n_past = 8509, n_tokens = 317
slot update_slots: id 0 | task 0 | saved context checkpoint 1 of 3 (pos_min = 8508, pos_max = 8508, size = 730.548 MiB)
slot release: id 0 | task 0 | stop processing: n_past = 8672, truncated = 0
slot print_timing: id 0 | task 0 |
prompt eval time = 172848.79 ms / 8509 tokens ( 20.31 ms per token, 49.23 tokens per second)
eval time = 58931.25 ms / 164 tokens ( 359.34 ms per token, 2.78 tokens per second)
total time = 231780.04 ms / 8673 tokens
srv update_slots: all slots are idle
srv log_server_r: request: POST /completion 127.0.0.1 200
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id 0 | task 0 | selected slot by lcs similarity, lcs_len = 8509, similarity = 0.981 (> 0.100 thold)
slot launch_slot_: id 0 | task 169 | processing task
slot update_slots: id 0 | task 169 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id 0 | task 169 | n_past = 8509, cache_tokens.size() = 8672, seq_id = 0, pos_min = 8671, n_swa = 1
slot update_slots: id 0 | task 169 | forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see https://github.com//pull/13194#issuecomment-2868343055)
slot update_slots: id 0 | task 169 | n_past = 0, memory_seq_rm [0, end)
slot update_slots: id 0 | task 169 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.240686
First Bad Commit
No response
Relevant log output
s:\llm\llama.vulkan>llama-server --model "s:\lmstudio\models\bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf" --alias "nvidia/Nemotron-H-47B-Reasoning-128K-Q4_K_M" --ctx-size 32768 -fa on -ctk f16 -ctv f16 -ngl 999 --host 127.0.0.1 --port 8081 --batch-size 2048 --no-mmap
load_backend: loaded RPC backend from s:\llm\llama.vulkan\ggml-rpc.dll
ggml_vulkan: Found 2 Vulkan devices:
ggml_vulkan: 0 = NVIDIA GeForce RTX 5090 (NVIDIA) | uma: 0 | fp16: 1 | bf16: 1 | warp size: 32 | shared memory: 49152 | int dot: 1 | matrix cores: NV_coopmat2
ggml_vulkan: 1 = Intel(R) UHD Graphics 770 (Intel Corporation) | uma: 1 | fp16: 1 | bf16: 0 | warp size: 32 | shared memory: 32768 | int dot: 1 | matrix cores: none
load_backend: loaded Vulkan backend from s:\llm\llama.vulkan\ggml-vulkan.dll
load_backend: loaded CPU backend from s:\llm\llama.vulkan\ggml-cpu-alderlake.dll
build: 6686 (128d522c) with clang version 19.1.5 for x86_64-pc-windows-msvc
system info: n_threads = 16, n_threads_batch = 16, total_threads = 24
system_info: n_threads = 16 (n_threads_batch = 16) / 24 | CPU : SSE3 = 1 | SSSE3 = 1 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | F16C = 1 | FMA = 1 | BMI2 = 1 | LLAMAFILE = 1 | OPENMP = 1 | REPACK = 1 |
main: binding port with default address family
main: HTTP server is listening, hostname: 127.0.0.1, port: 8081, http threads: 23
main: loading model
srv load_model: loading model 's:\lmstudio\models\bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf'
llama_model_load_from_file_impl: using device Vulkan0 (NVIDIA GeForce RTX 5090) (0000:01:00.0) - 31333 MiB free
llama_model_loader: loaded meta data with 48 key-value pairs and 577 tensors from s:\lmstudio\models\bartowski\nvidia_Nemotron-H-47B-Reasoning-128K-GGUF\nvidia_Nemotron-H-47B-Reasoning-128K-Q4_K_M.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = nemotron_h
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Nemotron H 47B Reasoning 128K
llama_model_loader: - kv 3: general.finetune str = Reasoning-128k
llama_model_loader: - kv 4: general.basename str = Nemotron-H
llama_model_loader: - kv 5: general.size_label str = 47B
llama_model_loader: - kv 6: general.license str = other
llama_model_loader: - kv 7: general.license.name str = nvidia-internal-scientific-research-a...
llama_model_loader: - kv 8: general.license.link str = https://www.nvidia.com/en-us/agreemen...
llama_model_loader: - kv 9: general.tags arr[str,3] = ["nvidia", "pytorch", "text-generation"]
llama_model_loader: - kv 10: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 11: nemotron_h.block_count u32 = 98
llama_model_loader: - kv 12: nemotron_h.context_length u32 = 1048576
llama_model_loader: - kv 13: nemotron_h.embedding_length u32 = 8192
llama_model_loader: - kv 14: nemotron_h.feed_forward_length arr[i32,98] = [0, 30720, 0, 30720, 0, 30720, 0, 307...
llama_model_loader: - kv 15: nemotron_h.attention.head_count u32 = 64
llama_model_loader: - kv 16: nemotron_h.attention.head_count_kv arr[i32,98] = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
llama_model_loader: - kv 17: nemotron_h.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 18: nemotron_h.attention.layer_norm_epsilon f32 = 0.000010
llama_model_loader: - kv 19: nemotron_h.vocab_size u32 = 131072
llama_model_loader: - kv 20: nemotron_h.rope.dimension_count u32 = 128
llama_model_loader: - kv 21: nemotron_h.ssm.conv_kernel u32 = 4
llama_model_loader: - kv 22: nemotron_h.ssm.state_size u32 = 256
llama_model_loader: - kv 23: nemotron_h.ssm.group_count u32 = 8
llama_model_loader: - kv 24: nemotron_h.ssm.inner_size u32 = 16384
llama_model_loader: - kv 25: nemotron_h.ssm.time_step_rank u32 = 256
llama_model_loader: - kv 26: nemotron_h.rope.scaling.finetuned bool = false
llama_model_loader: - kv 27: nemotron_h.attention.key_length u32 = 128
llama_model_loader: - kv 28: nemotron_h.attention.value_length u32 = 128
llama_model_loader: - kv 29: tokenizer.ggml.model str = gpt2
llama_model_loader: - kv 30: tokenizer.ggml.pre str = tekken
llama_model_loader: - kv 31: tokenizer.ggml.tokens arr[str,131072] = ["<unk>", "<s>", "</s>", "[INST]", "[...
llama_model_loader: - kv 32: tokenizer.ggml.token_type arr[i32,131072] = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 33: tokenizer.ggml.merges arr[str,269443] = ["─а ─а", "─а t", "e r", "i n", "─а ─...
llama_model_loader: - kv 34: tokenizer.ggml.eos_token_id u32 = 11
llama_model_loader: - kv 35: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 36: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 37: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 38: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 39: tokenizer.ggml.add_sep_token bool = false
llama_model_loader: - kv 40: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 41: tokenizer.chat_template str = {{ '<SPECIAL_10>System\n' }}{%- if mes...
llama_model_loader: - kv 42: general.quantization_version u32 = 2
llama_model_loader: - kv 43: general.file_type u32 = 15
llama_model_loader: - kv 44: quantize.imatrix.file str = /models_out/Nemotron-H-47B-Reasoning-...
llama_model_loader: - kv 45: quantize.imatrix.dataset str = /training_dir/calibration_datav5.txt
llama_model_loader: - kv 46: quantize.imatrix.entries_count u32 = 206
llama_model_loader: - kv 47: quantize.imatrix.chunks_count u32 = 822
llama_model_loader: - type f32: 369 tensors
llama_model_loader: - type q4_K: 181 tensors
llama_model_loader: - type q6_K: 27 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_K - Medium
print_info: file size = 26.24 GiB (4.82 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
load: printing all EOG tokens:
load: - 11 ('<SPECIAL_11>')
load: special tokens cache size = 1000
load: token to piece cache size = 0.8499 MB
print_info: arch = nemotron_h
print_info: vocab_only = 0
print_info: n_ctx_train = 1048576
print_info: n_embd = 8192
print_info: n_layer = 98
print_info: n_head = 64
print_info: n_head_kv = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: n_rot = 128
print_info: n_swa = 0
print_info: is_swa_any = 0
print_info: n_embd_head_k = 128
print_info: n_embd_head_v = 128
print_info: n_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: n_embd_k_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: n_embd_v_gqa = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-05
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 0.0e+00
print_info: n_ff = [0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 30720, 30720, 0, 0, 30720, 30720, 30720, 0, 30720, 0, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720, 0, 30720]
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = -1
print_info: rope scaling = linear
print_info: freq_base_train = 10000.0
print_info: freq_scale_train = 1
print_info: n_ctx_orig_yarn = 1048576
print_info: rope_finetuned = unknown
print_info: ssm_d_conv = 4
print_info: ssm_d_inner = 16384
print_info: ssm_d_state = 256
print_info: ssm_dt_rank = 256
print_info: ssm_n_group = 8
print_info: ssm_dt_b_c_rms = 0
print_info: model type = ?B
print_info: model params = 46.79 B
print_info: general.name = Nemotron H 47B Reasoning 128K
print_info: vocab type = BPE
print_info: n_vocab = 131072
print_info: n_merges = 269443
print_info: BOS token = 1 '<s>'
print_info: EOS token = 11 '<SPECIAL_11>'
print_info: UNK token = 0 '<unk>'
print_info: PAD token = 0 '<unk>'
print_info: LF token = 1010 '─К'
print_info: EOG token = 11 '<SPECIAL_11>'
print_info: max token length = 150
load_tensors: loading model tensors, this can take a while... (mmap = false)
load_tensors: offloading 98 repeating layers to GPU
load_tensors: offloading output layer to GPU
load_tensors: offloaded 99/99 layers to GPU
load_tensors: Vulkan0 model buffer size = 26284.26 MiB
load_tensors: Vulkan_Host model buffer size = 576.00 MiB
load_tensors: CPU model buffer size = 14.11 MiB
.................................................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 32768
llama_context: n_ctx_per_seq = 32768
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = enabled
llama_context: kv_unified = false
llama_context: freq_base = 10000.0
llama_context: freq_scale = 1
llama_context: n_ctx_per_seq (32768) < n_ctx_train (1048576) -- the full capacity of the model will not be utilized
llama_context: Vulkan_Host output buffer size = 0.50 MiB
llama_kv_cache: Vulkan0 KV buffer size = 640.00 MiB
llama_kv_cache: size = 640.00 MiB ( 32768 cells, 5 layers, 1/1 seqs), K (f16): 320.00 MiB, V (f16): 320.00 MiB
llama_memory_recurrent: Vulkan0 RS buffer size = 730.55 MiB
llama_memory_recurrent: size = 730.55 MiB ( 1 cells, 98 layers, 1 seqs), R (f32): 10.55 MiB, S (f32): 720.00 MiB
llama_context: Vulkan0 compute buffer size = 304.23 MiB
llama_context: Vulkan_Host compute buffer size = 248.36 MiB
llama_context: graph nodes = 2750
llama_context: graph splits = 182
common_init_from_params: added <SPECIAL_11> logit bias = -inf
common_init_from_params: setting dry_penalty_last_n to ctx_size = 32768
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
srv load_model: load_model: Chat template parsing error: this custom template is not supported, try using --jinja
srv load_model: load_model: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses
srv init: initializing slots, n_slots = 1
slot init: id 0 | task -1 | new slot n_ctx_slot = 32768
srv init: Enable thinking? 0
main: model loaded
main: chat template, chat_template: {%- for message in messages -%}
{{- '<|im_start|>' + message.role + '
' + message.content + '<|im_end|>
' -}}
{%- endfor -%}
{%- if add_generation_prompt -%}
{{- '<|im_start|>assistant
' -}}
{%- endif -%}, example_format: '<|im_start|>system
You are a helpful assistant<|im_end|>
<|im_start|>user
Hello<|im_end|>
<|im_start|>assistant
Hi there<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
'
main: server is listening on http://127.0.0.1:8081 - starting the main loop
srv update_slots: all slots are idle
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id 0 | task -1 | selected slot by LRU, t_last = -1
slot launch_slot_: id 0 | task 0 | processing task
slot update_slots: id 0 | task 0 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id 0 | task 0 | n_past = 0, memory_seq_rm [0, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.240686
slot update_slots: id 0 | task 0 | n_past = 2048, memory_seq_rm [2048, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 4096, n_tokens = 2048, progress = 0.481373
slot update_slots: id 0 | task 0 | n_past = 4096, memory_seq_rm [4096, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 6144, n_tokens = 2048, progress = 0.722059
slot update_slots: id 0 | task 0 | n_past = 6144, memory_seq_rm [6144, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 8192, n_tokens = 2048, progress = 0.962745
slot update_slots: id 0 | task 0 | n_past = 8192, memory_seq_rm [8192, end)
slot update_slots: id 0 | task 0 | prompt processing progress, n_past = 8509, n_tokens = 317, progress = 1.000000
slot update_slots: id 0 | task 0 | prompt done, n_past = 8509, n_tokens = 317
slot update_slots: id 0 | task 0 | saved context checkpoint 1 of 3 (pos_min = 8508, pos_max = 8508, size = 730.548 MiB)
slot release: id 0 | task 0 | stop processing: n_past = 8672, truncated = 0
slot print_timing: id 0 | task 0 |
prompt eval time = 172848.79 ms / 8509 tokens ( 20.31 ms per token, 49.23 tokens per second)
eval time = 58931.25 ms / 164 tokens ( 359.34 ms per token, 2.78 tokens per second)
total time = 231780.04 ms / 8673 tokens
srv update_slots: all slots are idle
srv log_server_r: request: POST /completion 127.0.0.1 200
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id 0 | task 0 | selected slot by lcs similarity, lcs_len = 8509, similarity = 0.981 (> 0.100 thold)
slot launch_slot_: id 0 | task 169 | processing task
slot update_slots: id 0 | task 169 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id 0 | task 169 | n_past = 8509, cache_tokens.size() = 8672, seq_id = 0, pos_min = 8671, n_swa = 1
slot update_slots: id 0 | task 169 | forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
slot update_slots: id 0 | task 169 | n_past = 0, memory_seq_rm [0, end)
slot update_slots: id 0 | task 169 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.240686
slot update_slots: id 0 | task 169 | n_past = 2048, memory_seq_rm [2048, end)
slot update_slots: id 0 | task 169 | prompt processing progress, n_past = 4096, n_tokens = 2048, progress = 0.481373
slot update_slots: id 0 | task 169 | n_past = 4096, memory_seq_rm [4096, end)
slot update_slots: id 0 | task 169 | prompt processing progress, n_past = 6144, n_tokens = 2048, progress = 0.722059
slot update_slots: id 0 | task 169 | n_past = 6144, memory_seq_rm [6144, end)
slot update_slots: id 0 | task 169 | prompt processing progress, n_past = 8192, n_tokens = 2048, progress = 0.962745
slot update_slots: id 0 | task 169 | n_past = 8192, memory_seq_rm [8192, end)
slot update_slots: id 0 | task 169 | prompt processing progress, n_past = 8509, n_tokens = 317, progress = 1.000000
slot update_slots: id 0 | task 169 | prompt done, n_past = 8509, n_tokens = 317
slot update_slots: id 0 | task 169 | saved context checkpoint 2 of 3 (pos_min = 8508, pos_max = 8508, size = 730.548 MiB)
slot release: id 0 | task 169 | stop processing: n_past = 8718, truncated = 0
slot print_timing: id 0 | task 169 |
prompt eval time = 174215.46 ms / 8509 tokens ( 20.47 ms per token, 48.84 tokens per second)
eval time = 75767.02 ms / 210 tokens ( 360.80 ms per token, 2.77 tokens per second)
total time = 249982.48 ms / 8719 tokens
srv update_slots: all slots are idle
srv log_server_r: request: POST /completion 127.0.0.1 200
common_sampler_types_from_names: unable to match sampler by name 'tfs_z'
common_sampler_types_from_names: unable to match sampler by name 'typical_p'
slot get_availabl: id 0 | task 169 | selected slot by lcs similarity, lcs_len = 8509, similarity = 0.976 (> 0.100 thold)
slot launch_slot_: id 0 | task 384 | processing task
slot update_slots: id 0 | task 384 | new prompt, n_ctx_slot = 32768, n_keep = 0, n_prompt_tokens = 8509
slot update_slots: id 0 | task 384 | n_past = 8509, cache_tokens.size() = 8718, seq_id = 0, pos_min = 8717, n_swa = 1
slot update_slots: id 0 | task 384 | forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
slot update_slots: id 0 | task 384 | n_past = 0, memory_seq_rm [0, end)
slot update_slots: id 0 | task 384 | prompt processing progress, n_past = 2048, n_tokens = 2048, progress = 0.240686