-
Notifications
You must be signed in to change notification settings - Fork 13.3k
Open
Description
This is a continuation after #14904 (comment)
I encounter a segfault on llama-cli with q4_0 models utilizing CPU repacking on windows avx2.
Running on GPU is fine, and if repacking is disabled, everything works fine too
Model used: gemma-3-4b-it-Q4_0.gguf
gcc version 12.2.0 (GCC)
Win64DevKit on Windows 10 LTSC
i9-13980HX CPU
First commit with issue: #14904
Compiling in debug produces no asserts. Here is my debug build run with gdb
.
D:\llama.cpp\bin>gdb --args llama-cli.exe --model D:\llama.cpp\gemma-3-4b-it-qat-Q4_0.gguf -p hello
Reading symbols from llama-cli.exe...
(gdb) run
Starting program: D:\llama.cpp\bin\llama-cli.exe --model D:\llama.cpp\gemma-3-4b-it-qat-Q4_0.gguf -p hello
[New Thread 26384.0x2ed8]
[New Thread 26384.0x9dfc]
[New Thread 26384.0x92d0]
register_backend: registered backend CPU (1 devices)
register_device: registered device CPU (13th Gen Intel(R) Core(TM) i9-13980HX)
[New Thread 26384.0x3898]
[Thread 26384.0x3898 exited with code 0]
[New Thread 26384.0x3190]
build: 6713 (d2ee056e) with cc (GCC) 12.2.0 for x86_64-w64-mingw32 (debug)
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 41 key-value pairs and 444 tensors from D:\llama.cpp\gemma-3-4b-it-qat-Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = gemma3
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Gemma 3 4b It Qat Q4_0 Unquantized
llama_model_loader: - kv 3: general.finetune str = it-qat-unquantized
llama_model_loader: - kv 4: general.basename str = gemma-3
llama_model_loader: - kv 5: general.size_label str = 4B
llama_model_loader: - kv 6: general.license str = gemma
llama_model_loader: - kv 7: general.base_model.count u32 = 1
llama_model_loader: - kv 8: general.base_model.0.name str = Gemma 3 4b It
llama_model_loader: - kv 9: general.base_model.0.organization str = Google
llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/google/gemma-3...
llama_model_loader: - kv 11: general.tags arr[str,4] = ["gemma3", "gemma", "google", "image-...
llama_model_loader: - kv 12: gemma3.context_length u32 = 131072
llama_model_loader: - kv 13: gemma3.embedding_length u32 = 2560
llama_model_loader: - kv 14: gemma3.block_count u32 = 34
llama_model_loader: - kv 15: gemma3.feed_forward_length u32 = 10240
llama_model_loader: - kv 16: gemma3.attention.head_count u32 = 8
llama_model_loader: - kv 17: gemma3.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 18: gemma3.attention.key_length u32 = 256
llama_model_loader: - kv 19: gemma3.attention.value_length u32 = 256
llama_model_loader: - kv 20: gemma3.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 21: gemma3.attention.sliding_window u32 = 1024
llama_model_loader: - kv 22: gemma3.attention.head_count_kv u32 = 4
llama_model_loader: - kv 23: gemma3.rope.scaling.type str = linear
llama_model_loader: - kv 24: gemma3.rope.scaling.factor f32 = 8.000000
llama_model_loader: - kv 25: tokenizer.ggml.model str = llama
llama_model_loader: - kv 26: tokenizer.ggml.pre str = default
llama_model_loader: - kv 27: tokenizer.ggml.tokens arr[str,262208] = ["<pad>", "<eos>", "<bos>", "<unk>", ...
llama_model_loader: - kv 28: tokenizer.ggml.scores arr[f32,262208] = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv 29: tokenizer.ggml.token_type arr[i32,262208] = [3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 2
llama_model_loader: - kv 31: tokenizer.ggml.eos_token_id u32 = 1
llama_model_loader: - kv 32: tokenizer.ggml.unknown_token_id u32 = 3
llama_model_loader: - kv 33: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 34: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 35: tokenizer.ggml.add_sep_token bool = false
llama_model_loader: - kv 36: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 37: tokenizer.chat_template str = {{ bos_token }}\n{%- if messages[0]['r...
llama_model_loader: - kv 38: tokenizer.ggml.add_space_prefix bool = false
llama_model_loader: - kv 39: general.quantization_version u32 = 2
llama_model_loader: - kv 40: general.file_type u32 = 2
llama_model_loader: - type f32: 205 tensors
llama_model_loader: - type q4_0: 238 tensors
llama_model_loader: - type q8_0: 1 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_0
print_info: file size = 2.35 GiB (5.19 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
�[0mload: printing all EOG tokens:
load: - 1 ('<eos>')
load: - 106 ('<end_of_turn>')
load: special tokens cache size = 6415
load: token to piece cache size = 1.9446 MB
print_info: arch = gemma3
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 2560
print_info: n_layer = 34
print_info: n_head = 8
print_info: n_head_kv = 4
print_info: n_rot = 256
print_info: n_swa = 1024
print_info: is_swa_any = 1
print_info: n_embd_head_k = 256
print_info: n_embd_head_v = 256
print_info: n_gqa = 2
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 6.2e-02
print_info: n_ff = 10240
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 0.125
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: model type = 4B
print_info: model params = 3.88 B
print_info: general.name = Gemma 3 4b It Qat Q4_0 Unquantized
print_info: vocab type = SPM
print_info: n_vocab = 262208
print_info: n_merges = 0
print_info: BOS token = 2 '<bos>'
print_info: EOS token = 1 '<eos>'
print_info: EOT token = 106 '<end_of_turn>'
print_info: UNK token = 3 '<unk>'
print_info: PAD token = 0 '<pad>'
print_info: LF token = 248 '<0x0A>'
print_info: EOG token = 1 '<eos>'
print_info: EOG token = 106 '<end_of_turn>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: CPU_REPACK model buffer size = 1721.25 MiB
load_tensors: CPU_Mapped model buffer size = 2402.82 MiB
.........................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = auto
llama_context: kv_unified = false
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 0.125
llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
�[0mllama_context: CPU output buffer size = 1.00 MiB
llama_kv_cache_iswa: creating non-SWA KV cache, size = 4096 cells
llama_kv_cache: CPU KV buffer size = 80.00 MiB
llama_kv_cache: size = 80.00 MiB ( 4096 cells, 5 layers, 1/1 seqs), K (f16): 40.00 MiB, V (f16): 40.00 MiB
llama_kv_cache_iswa: creating SWA KV cache, size = 1536 cells
llama_kv_cache: CPU KV buffer size = 174.00 MiB
llama_kv_cache: size = 174.00 MiB ( 1536 cells, 29 layers, 1/1 seqs), K (f16): 87.00 MiB, V (f16): 87.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context: CPU compute buffer size = 517.12 MiB
llama_context: graph nodes = 1369
llama_context: graph splits = 1
common_init_from_params: added <eos> logit bias = -inf
common_init_from_params: added <end_of_turn> logit bias = -inf
common_init_from_params: setting [New Thread 26384.0x8b08]
[New Thread 26384.0x6fcc]
d[New Thread 26384.0x86a4]
ry[New Thread 26384.0x538c]
_p[New Thread 26384.0x5718]
ena[New Thread 26384.0x2c40]
[New Thread 26384.0x52b4]
l[New Thread 26384.0x4680]
[New Thread 26384.0x909c]
[New Thread 26384.0x94d4]
ty[New Thread 26384.0x9870]
[New Thread 26384.0x7270]
_[New Thread 26384.0x737c]
[New Thread 26384.0x8cf8]
[New Thread 26384.0x5bc8]
last_n to ctx_size = 409
Thread 19 received signal SIGSEGV, Segmentation fault.
[Switching to Thread 26384.0x737c]
0x00007ff7c408965b in mul_sum_us8_pairs_acc_int32x8 (acc=..., ax=..., sy=...) at D:/llama.cpp/ggml/src/ggml-cpu/arch/x86/repack.cpp:151
151 static inline __m256i mul_sum_us8_pairs_acc_int32x8(const __m256i acc, const __m256i ax, const __m256i sy) {
I then obtain the backtrace.
(gdb) bt
#0 0x00007ff7c408965b in mul_sum_us8_pairs_acc_int32x8 (acc=..., ax=..., sy=...)
at D:/llama.cpp/ggml/src/ggml-cpu/arch/x86/repack.cpp:151
#1 0x00007ff7c4089803 in mul_sum_i8_pairs_acc_int32x8 (acc=..., x=..., y=...)
at D:/llama.cpp/ggml/src/ggml-cpu/arch/x86/repack.cpp:173
#2 0x00007ff7c40ae911 in gemv_q4_b32_8x8_q8_0_lut_avx<block<4, 8> >(int, float * __restrict__, size_t, const void * __restrict__, const void * __restrict__, int, int, __m256i) (n=2560, s=0x202907a2480, bs=2048, vx=0x2038bc5a080,
vy=0x202ee906740, nr=1, nc=128, signextendlut=...) at D:/llama.cpp/ggml/src/ggml-cpu/arch/x86/repack.cpp:603
#3 0x00007ff7c408d012 in ggml_gemv_q4_0_8x8_q8_0(int, float * __restrict__, size_t, const void * __restrict__, const void * __restrict__, int, int) (n=2560, s=0x202907a2480, bs=2048, vx=0x2038bc5a080, vy=0x202ee906740, nr=1, nc=128)
at D:/llama.cpp/ggml/src/ggml-cpu/arch/x86/repack.cpp:1383
#4 0x00007ff7c408781f in ggml::cpu::repack::gemv<block_q4_0, 8ll, 8ll, (ggml_type)8> (n=2560, s=0x202907a2480,
bs=2048, vx=0x2038bc5a080, vy=0x202ee906740, nr=1, nc=128) at D:/llama.cpp/ggml/src/ggml-cpu/repack.cpp:1501
#5 0x00007ff7c425f23b in ggml::cpu::repack::tensor_traits<block_q4_0, 8ll, 8ll, (ggml_type)8>::forward_mul_mat (
this=0x7ff7c4573730 <ggml_repack_get_optimal_repack_type(ggml_tensor const*)::q4_0_8x8_q8_0>,
params=0x1a4ebff750, op=0x202f0228940) at D:/llama.cpp/ggml/src/ggml-cpu/repack.cpp:1666
#6 0x00007ff7c425e864 in ggml::cpu::repack::tensor_traits<block_q4_0, 8ll, 8ll, (ggml_type)8>::compute_forward (
this=0x7ff7c4573730 <ggml_repack_get_optimal_repack_type(ggml_tensor const*)::q4_0_8x8_q8_0>,
params=0x1a4ebff750, op=0x202f0228940) at D:/llama.cpp/ggml/src/ggml-cpu/repack.cpp:1591
#7 0x00007ff7c4088a21 in ggml_cpu_extra_compute_forward (params=0x1a4ebff750, op=0x202f0228940)
at D:/llama.cpp/ggml/src/ggml-cpu/traits.cpp:17
#8 0x00007ff7c40bd4b0 in ggml_compute_forward (params=0x1a4ebff750, tensor=0x202f0228940)
at D:/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c:1669
#9 0x00007ff7c40bf1f8 in ggml_graph_compute_thread (data=0x202f0aa9d60)
at D:/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c:2883
#10 0x00007ff7c40c0153 in ggml_graph_compute._omp_fn.0 () at D:/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c:3172
#11 0x00007ff7c41c9c75 in gomp_thread_start ()
#12 0x00007ff7c41ea993 in pthread_create_wrapper ()
#13 0x00007ffbaa8daf5a in msvcrt!_beginthreadex () from C:\Windows\System32\msvcrt.dll
#14 0x00007ffbaa8db02c in msvcrt!_endthreadex () from C:\Windows\System32\msvcrt.dll
I ran it again with -t 1
D:\llama.cpp\bin>gdb --args llama-cli.exe --model D:\llama.cpp\gemma-3-4b-it-qat-Q4_0.gguf -p hello -t 1
Reading symbols from llama-cli.exe...
(gdb) run
Starting program: D:\llama.cpp\bin\llama-cli.exe --model D:\llama.cpp\gemma-3-4b-it-qat-Q4_0.gguf -p hello -t 1
[New Thread 18200.0x6cd0]
[New Thread 18200.0x2bd4]
[New Thread 18200.0x901c]
register_backend: registered backend CPU (1 devices)
register_device: registered device CPU (13th Gen Intel(R) Core(TM) i9-13980HX)
[New Thread 18200.0x8fe0]
[Thread 18200.0x8fe0 exited with code 0]
[New Thread 18200.0x9a0c]
build: 6713 (d2ee056e) with cc (GCC) 12.2.0 for x86_64-w64-mingw32 (debug)
main: llama backend init
main: load the model and apply lora adapter, if any
llama_model_loader: loaded meta data with 41 key-value pairs and 444 tensors from D:\llama.cpp\gemma-3-4b-it-qat-Q4_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = gemma3
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Gemma 3 4b It Qat Q4_0 Unquantized
llama_model_loader: - kv 3: general.finetune str = it-qat-unquantized
llama_model_loader: - kv 4: general.basename str = gemma-3
llama_model_loader: - kv 5: general.size_label str = 4B
llama_model_loader: - kv 6: general.license str = gemma
llama_model_loader: - kv 7: general.base_model.count u32 = 1
llama_model_loader: - kv 8: general.base_model.0.name str = Gemma 3 4b It
llama_model_loader: - kv 9: general.base_model.0.organization str = Google
llama_model_loader: - kv 10: general.base_model.0.repo_url str = https://huggingface.co/google/gemma-3...
llama_model_loader: - kv 11: general.tags arr[str,4] = ["gemma3", "gemma", "google", "image-...
llama_model_loader: - kv 12: gemma3.context_length u32 = 131072
llama_model_loader: - kv 13: gemma3.embedding_length u32 = 2560
llama_model_loader: - kv 14: gemma3.block_count u32 = 34
llama_model_loader: - kv 15: gemma3.feed_forward_length u32 = 10240
llama_model_loader: - kv 16: gemma3.attention.head_count u32 = 8
llama_model_loader: - kv 17: gemma3.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 18: gemma3.attention.key_length u32 = 256
llama_model_loader: - kv 19: gemma3.attention.value_length u32 = 256
llama_model_loader: - kv 20: gemma3.rope.freq_base f32 = 1000000.000000
llama_model_loader: - kv 21: gemma3.attention.sliding_window u32 = 1024
llama_model_loader: - kv 22: gemma3.attention.head_count_kv u32 = 4
llama_model_loader: - kv 23: gemma3.rope.scaling.type str = linear
llama_model_loader: - kv 24: gemma3.rope.scaling.factor f32 = 8.000000
llama_model_loader: - kv 25: tokenizer.ggml.model str = llama
llama_model_loader: - kv 26: tokenizer.ggml.pre str = default
llama_model_loader: - kv 27: tokenizer.ggml.tokens arr[str,262208] = ["<pad>", "<eos>", "<bos>", "<unk>", ...
llama_model_loader: - kv 28: tokenizer.ggml.scores arr[f32,262208] = [-1000.000000, -1000.000000, -1000.00...
llama_model_loader: - kv 29: tokenizer.ggml.token_type arr[i32,262208] = [3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 3, ...
llama_model_loader: - kv 30: tokenizer.ggml.bos_token_id u32 = 2
llama_model_loader: - kv 31: tokenizer.ggml.eos_token_id u32 = 1
llama_model_loader: - kv 32: tokenizer.ggml.unknown_token_id u32 = 3
llama_model_loader: - kv 33: tokenizer.ggml.padding_token_id u32 = 0
llama_model_loader: - kv 34: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 35: tokenizer.ggml.add_sep_token bool = false
llama_model_loader: - kv 36: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 37: tokenizer.chat_template str = {{ bos_token }}\n{%- if messages[0]['r...
llama_model_loader: - kv 38: tokenizer.ggml.add_space_prefix bool = false
llama_model_loader: - kv 39: general.quantization_version u32 = 2
llama_model_loader: - kv 40: general.file_type u32 = 2
llama_model_loader: - type f32: 205 tensors
llama_model_loader: - type q4_0: 238 tensors
llama_model_loader: - type q8_0: 1 tensors
print_info: file format = GGUF V3 (latest)
print_info: file type = Q4_0
print_info: file size = 2.35 GiB (5.19 BPW)
load: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
�[0mload: printing all EOG tokens:
load: - 1 ('<eos>')
load: - 106 ('<end_of_turn>')
load: special tokens cache size = 6415
load: token to piece cache size = 1.9446 MB
print_info: arch = gemma3
print_info: vocab_only = 0
print_info: n_ctx_train = 131072
print_info: n_embd = 2560
print_info: n_layer = 34
print_info: n_head = 8
print_info: n_head_kv = 4
print_info: n_rot = 256
print_info: n_swa = 1024
print_info: is_swa_any = 1
print_info: n_embd_head_k = 256
print_info: n_embd_head_v = 256
print_info: n_gqa = 2
print_info: n_embd_k_gqa = 1024
print_info: n_embd_v_gqa = 1024
print_info: f_norm_eps = 0.0e+00
print_info: f_norm_rms_eps = 1.0e-06
print_info: f_clamp_kqv = 0.0e+00
print_info: f_max_alibi_bias = 0.0e+00
print_info: f_logit_scale = 0.0e+00
print_info: f_attn_scale = 6.2e-02
print_info: n_ff = 10240
print_info: n_expert = 0
print_info: n_expert_used = 0
print_info: causal attn = 1
print_info: pooling type = 0
print_info: rope type = 2
print_info: rope scaling = linear
print_info: freq_base_train = 1000000.0
print_info: freq_scale_train = 0.125
print_info: n_ctx_orig_yarn = 131072
print_info: rope_finetuned = unknown
print_info: model type = 4B
print_info: model params = 3.88 B
print_info: general.name = Gemma 3 4b It Qat Q4_0 Unquantized
print_info: vocab type = SPM
print_info: n_vocab = 262208
print_info: n_merges = 0
print_info: BOS token = 2 '<bos>'
print_info: EOS token = 1 '<eos>'
print_info: EOT token = 106 '<end_of_turn>'
print_info: UNK token = 3 '<unk>'
print_info: PAD token = 0 '<pad>'
print_info: LF token = 248 '<0x0A>'
print_info: EOG token = 1 '<eos>'
print_info: EOG token = 106 '<end_of_turn>'
print_info: max token length = 48
load_tensors: loading model tensors, this can take a while... (mmap = true)
load_tensors: CPU_REPACK model buffer size = 1721.25 MiB
load_tensors: CPU_Mapped model buffer size = 2402.82 MiB
.........................................................................
llama_context: constructing llama_context
llama_context: n_seq_max = 1
llama_context: n_ctx = 4096
llama_context: n_ctx_per_seq = 4096
llama_context: n_batch = 2048
llama_context: n_ubatch = 512
llama_context: causal_attn = 1
llama_context: flash_attn = auto
llama_context: kv_unified = false
llama_context: freq_base = 1000000.0
llama_context: freq_scale = 0.125
llama_context: n_ctx_per_seq (4096) < n_ctx_train (131072) -- the full capacity of the model will not be utilized
�[0mllama_context: CPU output buffer size = 1.00 MiB
llama_kv_cache_iswa: creating non-SWA KV cache, size = 4096 cells
llama_kv_cache: CPU KV buffer size = 80.00 MiB
llama_kv_cache: size = 80.00 MiB ( 4096 cells, 5 layers, 1/1 seqs), K (f16): 40.00 MiB, V (f16): 40.00 MiB
llama_kv_cache_iswa: creating SWA KV cache, size = 1536 cells
llama_kv_cache: CPU KV buffer size = 174.00 MiB
llama_kv_cache: size = 174.00 MiB ( 1536 cells, 29 layers, 1/1 seqs), K (f16): 87.00 MiB, V (f16): 87.00 MiB
llama_context: Flash Attention was auto, set to enabled
llama_context: CPU compute buffer size = 517.12 MiB
llama_context: graph nodes = 1369
llama_con
Thread 1 received signal SIGSEGV, Segmentation fault.
0x00007ff7c408cfd7 in ggml_gemv_q4_0_8x8_q8_0(int, float * __restrict__, size_t, const void * __restrict__, const void * __restrict__, int, int) (n=2560, s=0x11e2d22c880, bs=2048, vx=0x11dac138080, vy=0x11d0efd6720, nr=1, nc=2048) at D:/llama.cpp/ggml/src/ggml-cpu/arch/x86/repack.cpp:1383
1383 gemv_q4_b32_8x8_q8_0_lut_avx<block_q4_0x8>(n, s, bs, vx, vy, nr, nc, signextendlut);
(gdb) bt
#0 0x00007ff7c408cfd7 in ggml_gemv_q4_0_8x8_q8_0(int, float * __restrict__, size_t, const void * __restrict__, const void * __restrict__, int, int) (n=2560, s=0x11e2d22c880, bs=2048, vx=0x11dac138080, vy=0x11d0efd6720, nr=1, nc=2048)
at D:/llama.cpp/ggml/src/ggml-cpu/arch/x86/repack.cpp:1383
#1 0x00007ff7c408781f in ggml::cpu::repack::gemv<block_q4_0, 8ll, 8ll, (ggml_type)8> (n=2560, s=0x11e2d22c880,
bs=2048, vx=0x11dac138080, vy=0x11d0efd6720, nr=1, nc=2048) at D:/llama.cpp/ggml/src/ggml-cpu/repack.cpp:1501
#2 0x00007ff7c425f23b in ggml::cpu::repack::tensor_traits<block_q4_0, 8ll, 8ll, (ggml_type)8>::forward_mul_mat (
this=0x7ff7c4573730 <ggml_repack_get_optimal_repack_type(ggml_tensor const*)::q4_0_8x8_q8_0>,
params=0x17599f8020, op=0x11d10977940) at D:/llama.cpp/ggml/src/ggml-cpu/repack.cpp:1666
#3 0x00007ff7c425e864 in ggml::cpu::repack::tensor_traits<block_q4_0, 8ll, 8ll, (ggml_type)8>::compute_forward (
this=0x7ff7c4573730 <ggml_repack_get_optimal_repack_type(ggml_tensor const*)::q4_0_8x8_q8_0>,
params=0x17599f8020, op=0x11d10977940) at D:/llama.cpp/ggml/src/ggml-cpu/repack.cpp:1591
#4 0x00007ff7c4088a21 in ggml_cpu_extra_compute_forward (params=0x17599f8020, op=0x11d10977940)
at D:/llama.cpp/ggml/src/ggml-cpu/traits.cpp:17
#5 0x00007ff7c40bd4b0 in ggml_compute_forward (params=0x17599f8020, tensor=0x11d10977940)
at D:/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c:1669
#6 0x00007ff7c40bf1f8 in ggml_graph_compute_thread (data=0x11d111e9880)
at D:/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c:2883
#7 0x00007ff7c40bf7d6 in ggml_graph_compute (cgraph=0x11d1124cf38, cplan=0x17599f8350)
at D:/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.c:3176
#8 0x00007ff7c407d5fb in ggml_backend_cpu_graph_compute (backend=0x11d0ef5aca0, cgraph=0x11d1124cf38)
at D:/llama.cpp/ggml/src/ggml-cpu/ggml-cpu.cpp:186
#9 0x00007ff7c41938a9 in ggml_backend_graph_compute_async (backend=0x11d0ef5aca0, cgraph=0x11d1124cf38)
at D:/llama.cpp/ggml/src/ggml-backend.cpp:359
#10 0x00007ff7c419842f in ggml_backend_sched_compute_splits (sched=0x11d0ef564a0)
at D:/llama.cpp/ggml/src/ggml-backend.cpp:1553
#11 0x00007ff7c4199130 in ggml_backend_sched_graph_compute_async (sched=0x11d0ef564a0, graph=0x11d10950060)
at D:/llama.cpp/ggml/src/ggml-backend.cpp:1753
#12 0x00007ff7c3fd82a0 in llama_context::graph_compute (this=0x11d14448660, gf=0x11d10950060, batched=true)
at D:/llama.cpp/src/llama-context.cpp:1460
Metadata
Metadata
Assignees
Labels
No labels