Skip to content

ghlee0304/tensorflow-basic-and-advanced

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


tensorflow-basic-and-advanced

tensorflow for deep learning

Requirements

  • tensorFlow
  • numpy
  • scipy
  • scikit-learn
  • matplotlib

Basic

    • [lab01-1] linear regression
    • [lab01-2] linear regression get_variable
    • [lab01-3] linear regression using function
    • [lab01-4] linear regression compute gradient
    • [lab01-5] ridge regression
    • [lab01-6] lasso regression
    • [lab01-7] support vector regression
    • [lab01-8] deep regression
    • [lab02-1] classifier logistic regression
    • [lab02-2] classifier softmax regression
    • [lab02-3] classifier support vector regression
    • [lab02-4] classifier multi class softmax regression
    • [lab02-5] classifier multi class svm
    • [lab03-1] tensorboard basic usages
    • [lab03-2] tensorboard var scope
    • [lab03-3] tensorboard summary
    • [lab03-4] tensorboard device
    • [lab03-5] tensorboard many models
    • [lab04-1] data manipulation load csv
    • [lab04-2] data manipulation npy
    • [lab04-3] data manipulation train test validation
    • [lab04-4] data manipulation minibatch
    • [lab04-5] data manipulation tfrecord write1
    • [lab04-6] data manipulation tfrecord read1
    • [lab04-7] data manipulation tfrecord write2
    • [lab04-8] data manipulation tfrecord read2
    • [lab04-9] data manipulation queue
    • [lab05-1] activation sigmoid
    • [lab05-2] activation tanh
    • [lab05-3] activation relu
    • [lab05-4] activation leaky relu
    • [lab05-5] activation relu with xavier
    • [lab06-1] optimizer gradient descent
    • [lab06-2] optimizer momentum
    • [lab06-3] optimizer adadelta
    • [lab06-4] optimizer adagrad
    • [lab06-5] optimizer rmsporp
    • [lab06-6] optimizer adam
    • [lab07-1] l1 regularization
    • [lab07-2] l2 regularization
    • [lab07-3] dropout
    • [lab07-4] batch normalization
    • [lab07-5] batch normalization and dropout
    • [lab08-0] mnist and cifar
    • [lab08-1] cnn mnist base
    • [lab08-2] cnn mnist learning rate decay
    • [lab08-3] cnn mnist dropout
    • [lab08-4] cnn mnist batch normalization
    • [lab08-5] cnn mnist batch normalization and dropout
    • [lab08-6] cnn mnist svm loss
    • [lab08-7] cnn cifar base
    • [lab08-8] cnn cifar batch normalization and dropout1
    • [lab08-9] cnn cifar batch normalization and dropout2
    • [lab08-X] cnn cifar batch normalization and dropout3
    • [lab09-1] rnn sequence labeling base
    • [lab09-2] rnn sequence labeling LSTM
    • [lab09-3] rnn sequence labeling peephole
    • [lab09-4] rnn sequence labeling gradient clipping
    • [lab09-5] rnn sequence labeling gradient normalization
    • [lab09-6] rnn sequence labeling dropout
    • [lab09-7] rnn sequence labeling stacked LSTM
    • [lab09-8] rnn sequence labeling deep LSTM
    • [lab10-1] model save
    • [lab10-2] model restore
    • [lab10-3] model flags
    • [lab10-4] model class
    • [lab10-5] model decorator

References

blog

github

site

book

No Name Author Years
1 TensorFlow for Machine Intelligence: A Hands-On Introduction to Learning Algorithms Sam Abrahams, Danijar Hafner, Erik Erwitt, Ariel Scarpinelli 2016
2 First Contact With Tensorflow Jordi Torres 2016
3 Learning TensorFlow: A Guide to Building Deep Learning Systems Tom Hope, Yehezkel S. Resheff, Itay Lieder 2017
4 Tensorflow Machine Learning Cookbook Nick McClure 2017

About

All about tensorflow

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages