num7.h
is a C++ high-level (python3 style), lightweight, floating-point computing header file for ARBITRARY PRECISION DECIMAL ARITHMETIC.
Easy to use like school math and WITHOUT IEEE754 ISSUES AND NUMBER COMPARING FAILURES, it can be deployed
for educational school, web e-commerce developing, accounting apps and general math programs included financial ones and AI compliance.
-
With your favourite editor create num7.h and num7.cpp file and copy it along with your c++ app.cpp file in that same folder
-
Ok!
--- CALCULATOR MODE ---
#include "num7.h"
using namespace num7;
int main() {
/* ADDITION */ add("2.5", "3.6").print(" = 2.5 + 3.6 (ADDITION)\n"); //6.1
/* SUBTRACTION */ sub("2.5", "3.6").print(" = 2.5 - 3.6 (SUBTRACTION)\n"); //-1.1
/* MULTIPLICATION */ mul("2.5", "3.6").print(" = 2.5 * 3.6 (MULTIPLICATION)\n"); //9.0
/* DIVISION */ div("2.5", "3.6").print(" = 2.5 / 3.6 (DIVISION)\n"); //0.6944444444444444444444444444444444444444
/* DIVISION REMAINDER */ mod("11.0", "8.0").print(" = 11 % 8 (DIVISION REMAINDER)\n"); //3.0
/* INV */ inv("3.0").print(" = 1 / 3 (INV)\n"); //0.33333333333333333333333333333333
/* x2 */ x2("3.0").print(" = 3 ^ 2 (x2)\n"); //9.0
/* x3 */ x3("3.0").print(" = 3 ^ 3 (x3)\n"); //27.0
/* POWER */ xy("3.14", "8.0").print(" = 3.14 ^ 8 (POWER)\n"); //9450.1169810786918656
/* POWER OF TEN */ _10y(6).print(" = 10^6 (TEN POWER)\n"); //1000000.0
/* POWER OF TWO */ _2y(5).print(" = 2^5 (TWO POWER)\n"); //32.0
/* POWER OF e */ _ey(5).round(29).print(" = e^5 (e POWER)\n"); //148.41315910257660342111558004056
/* FACTORIAL */ NUM P(fact(5)); P.print(" = 5! (FACTORIAL)\n");//120
/* BINARY */ NUM n1("257.0"); char* ram1 = n1.to_bin(1); print(ram1, " = 257 (BINARY) \n"); free(ram1); //100000001 = 257 (BINARY)
/* HEXADECIMAL */ NUM n2("257.0"); char* ram2 = n2.to_bin(0); print(ram2, " = 257 (HEXADECIMAL)\n"); free(ram2);//101 = 257 (HEXADECIMAL)
/* SQUARE ROOT */ sqr("2.0").print(" (SQUARE ROOT OF 2)\n"); //1.414213562
/* ROUND 2 DIGITS */ round(sqr("2.0")).print(" = SQUARE ROOT OF 2 (ROUND 2 DIGITS)\n"); //1.41
/* ROUND 4 DIGITS */ round(pi(), 4).print(" =~ 3.141592654 (ROUND 4 DIGITS)\n"); //3.1416
/* ROUND BANKING */ round_bank(pi(), 7).print(" =~ 3.141592654 (ROUND BANKING 7 DIGITS)\n"); //3.1415926
/* ABS */ Abs("-5.25").print(" (ABSOLUTE VALUE OF -5.25)\n"); //5.25
/* EXP */ NUM n3("314.0e-2"); n3.print(" = 314.0e-2 (EXP)\n"); //3.14 = 314.0e-2 (EXP)
/* SCIENTIFIC */ NUM n4("314.0e-2"); into_exp(n4).print(" = 3.14e0 (SCI)\n"); //3.14 = 3.14e0 (SCI)
/* pi */ pi().print(" (pi)\n"); //3.1415926535897932384626433832795
/* e */ e().print(" (e)\n"); //2.7182818284590452353602874713527
/* 10 TIME VALUE */ _10x("5.25").print(" (10 TIME VALUE OF 5.25)\n"); //52.5
/* 100 TIME VALUE */ _100x("5.25").print(" (100 TIME VALUE OF 5.25)\n"); //525.0
/* 1000 TIME VALUE */ _1000x("5.25").print(" (1000 TIME VALUE OF 5.25)\n"); //5250.0
/* DIVIDE FOR 10 */ _10div("5.25").print(" (DIVISION FOR TEN OF 5.25)\n"); //0.525
/* DIVIDE FOR 100 */ _100div("5.25").print(" (DIVISION FOR HUNDRED OF 5.25)\n"); //0.0525
/* DIVIDE FOR 1000 */ _1000div("5.25").print(" (DIVISION FOR THOUSAND OF 5.25)\n"); //0.00525
/* PERCENTAGE */ pct("3.725", "150.00").round(2).print(" = 3.725% OF 150 (PERCENTAGE)\n"); //5.59
/* PERTHOUSAND */ pth("2.00", "20_000.00").round(2).print(" = 2PTH OF 20000 (PERTHOUSAND)\n"); //40.0
/* SPIN-OFF */ spinoff("22.00", "1_299.00").round(2).print(" = (-22%) 1299 (SPIN-OFF)\n"); //1064.75
/* SPIN-ON */ spinon("22.00", "1_064.75").round(2).print(" = +22% OF 1064.75 (SPIN-ON)\n"); //1299.0
print("----------------------\n"); //----------------------
#define ELEMENTS 5
int elements = 5; NUM cart[ELEMENTS]; //19.31999 19.32 18.37 -15.13 -15.12 => ELEMENTS
cart[0] = "19.31999"; cart[1] = "19.32"; cart[2] = "18.37"; cart[3] = "-15.13"; cart[4] = "-15.12";
for (elements = 0; elements < 5; elements++) print(cart[elements], " "); print("=> ELEMENTS\n"); //19.31999 19.32 18.37 -15.13 -15.12
/* SUM */ sum(cart, elements).print(" => SUM\n"); //26.75999
/* MEAN */ mean(cart, elements).round().print(" => MEAN\n"); //5.35
/* MIN */ min(cart, elements).print(" => MIN\n"); //-15.13
/* MAX */ max(cart, elements).print(" => MAX\n"); //19.32
/*MIN MAX*/ NUM* result = minmax(cart, elements); //
result[0].print(" => MIN, "); //-15.13 => MIN and
result[1].print(" => MAX\n"); //19.32 => MAX
/* FORMAT */ NUM a("-3_000_000.0"); char* ram4 = format(a); print(ram4); print(" => FORMATTING\n"); free(ram4); //-3,000,000.00 => FORMATTING
print("----------------------\n"); //----------------------
return 0;
}
(=) assignment:
NUM a("3.0"), b("5.0"), c("0.0"); //DECLARATION AND INITIALIZATION
print("a = "); print(a, " b = "); print(b, " c = "); print(c, "\n");//a = 3.0 b = 5.0 c = 0.0
(+) adding:
NUM R = a + b + c; //DECLARATION AND INITIALIZATION
print("R = "); print(R, "\n"); //R = 8.0
a = "0.1"; b = "0.2"; c = "0.0"; //INITIALIZATION
R = a + b + c;
print("R = "); print(R, "\n"); //R = 0.3
(-) subtracting:
a = "0.1"; b = "0.2"; c = "0.3"; //INITIALIZATION
R = a + b - c; //INITIALIZATION
print("R = "); print(R, "\n"); //R = 0.0
a = "-3.99"; b = "-5.20"; c = "+3.01"; //INITIALIZATION
R = a - b - c; //INITIALIZATION
print("R = "); print(R, "\n"); //R = -1.8
(*) multiplying:
a = "-3.99"; b = "-5.20"; c = "+3.01"; //INITIALIZATION
R = a * b * c; //INITIALIZATION
print("R = "); print(R, "\n"); //R = 62.45148
(/) dividing:
a = "3.0"; b = "5.7"; //INITIALIZATION
R = a / b; //INITIALIZATION
print("R = "); print(R, "\n"); //R = 0.52631578947368421052631578947368
print("R = "); print(div(a, b).round(), "\n"); //R = 0.53
(% operator) integer division and floating-point remainder:
a = 2564; b = 17; //INITIALIZATION
NUM quotient((a / b).trunk(0)); //DECLARATION AND INITIALIZATION
NUM remainder(a % b); //DECLARATION AND INITIALIZATION
print("quotient = "); quotient.print("\n"); //quotient = 150.0
print("INTEGER remainder = "); remainder.print("\n"); //INTEGER remainder = 14.0
a = "3.141592654"; b = 2; //INITIALIZATION
quotient = (a / b).trunk(0); remainder = a % b;
print("quotient = "); quotient.print("\n"); //quotient = 1.0
print("FLOATING-POINT Remainder = "); remainder.print("\n");//FLOATING-POINT Remainder = 1.141592654
(sqrt) square root function:
NUM a("123_456_789.1234567891"); //DECLARATION AND INITIALIZATION
NUM root = a.sqrt(); //DECLARATION AND INITIALIZATION
print("root = ", root, "\n"); //root = 11111.111066
(^) power operator and pow function:
NUM a("3.14"), b(2); //DECLARATION AND INITIALIZATION
NUM power = a.pow(9); //DECLARATION AND INITIALIZATION
print("power = ", power, "\n"); //power = 29673.367320587092457984
power = (b ^ 32); //INITIALIZATION (power needs priority)
print("power = ", power, "\n"); //power = 4294967296.0
print("power = ", pow(a, b), "\n"); //power = 9.8596
logic (<, <=, >, >=, !=, ==) and relational operators (&&, ||, !).
(is ...):
NUM a("3.0"), b("-5.0"), c("1.53"); //DECLARATION AND INITIALIZATION
print(a.is_positive(), "\n"); //1 (true)
print(!a.is_zero(), "\n"); //1 (true)
print(c.is_negative(), "\n"); //0 (false)
print(b.is_negative(), "\n"); //1 (true)
(< <= > >= != ==):
NUM a("0.0"), b("0.1"), c("-0.2"); //DECLARATION AND INITIALIZATION
print(a < b, " "); print(a < c, " "); print(b < c, "\n"); //1 0 0 (True False False)
print(a <= b, " "); print(a <= c, " "); print(b <= c, "\n"); //1 0 0 (True False False)
print(a > b, " "); print(a > c, " "); print(b > c, "\n"); //0 1 1 (False True True)
print(a >= a, " "); print(a >= c, " "); print(b >= c, "\n"); //1 1 1 (True True True)
print(c == -2 * b, " "); print(a == c + 2 * b, " "); print(a != a + b + c, "\n"); //1 1 1 (True True True)
print(a && b, " "); print(a || b, " "); print(!a, "\n"); //0 1 1 (False True True)
(+ - unary operators):
NUM a, b; //DECLARATION
a = "-10.0", b = "+10.1"; //INITIALIZATION
char* p = a.format();
print("a = ", p); free(p);
p = b.format(2, ',', true); //a = -10.00 b = +10.10
print(" b = ", p, "\n"); free(p);
On a given NUM variable the following arithmetic methods are available.
variable arithmetic:
NUM a("10.25"); //DECLARATION AND INITIALIZATION
print(a, "\n"); //10.25
print(a.inc(1), "\n"); //11.25
print(a.dec(2), "\n"); //9.25
print(a.dec("4.25"), "\n"); //5.0
print(a, "\n"); //5.0
print(a = a.mul("5.01"), "\n"); //25.05
print(a, "\n"); //25.05
print(a.clear(), "\n"); //0.0
print("----------------------\n"); //----------------------
NUM price("59.99"), rate("22.00"); //DECLARATION AND INITIALIZATION
print(price, "\n"); //59.99
NUM price_industrial = price.spinoff(rate).round(); //DECLARATION AND INITIALIZATION
print(price_industrial, "\n"); //49.17
price = price_industrial.spinon(rate).round(); //INITIALIZATION
print(price, " final price\n"); //59.99 final price
char *p = (price - price.pct("17.49").round()) .format();
print(p, " discounted price\n"); free(p); //49.50 discounted price
EVEN ODD numbering methods:
NUM a(6), b(3), c("3.14"); //DECLARATION AND INITIALIZATION
print(a, " INTEGER => "); print(a.is_integer(), " EVEN => "); print(a.is_even(), "\n"); //6.0 INTEGER => 1 (true) EVEN => 1 (true)
print(b, " INTEGER => "); print(a.is_integer(), " ODD => "); print(b.is_odd(), "\n"); //3.0 INTEGER => 1 (true) ODD => 1 (true)
print(c, " FLOAT => "); print(c.is_floating(), "\n"); //3.14 FLOAT => 1 (true)
double A = -0.3; //double question //DECLARATION AND INITIALIZATION
A += 0.1; A += 0.1; A += 0.1;
if (A == 0.0) print("double, SUCCESS");
else printf("double, FAILURE because %.6f is not equal 0.0\n", A); //double issue
print("----------------------\n");
NUM a("-0.3"); //NUM question //DECLARATION AND INITIALIZATION
a += "0.1"; a += "0.1"; a += "0.1";
if (a == "0.0") print("NUM, SUCCESS", "\n"); //NUM solved
else print("NUM, FAILURE because ", a, " is not equal 0.0\n");
print("----------------------\n");
/* VIDEO OUTPUT:
double, FAILURE because 0.000000 is not equal 0.0
----------------------
NUM, SUCCESS
---------------------- */
LOOP EXAMPLE:
for (NUM i("-1.0"); i != (i64)0; i += "0.1") //-1.0 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1
print(i, " ");
print("\n----------------------\n");
NUM i(0); //DECLARATION AND INITIALIZATION
while (i < "1.0") {
i.inc("0.1"); //i += NUM("0.1")
if (i <= "0.5") continue;
print(i, " "); //0.6 0.7 0.8 0.9 1.0
}
print("\n----------------------\n");
while (i) {
i.dec("0.1"); //i -= NUM("0.1")
if (i >= "0.5") continue;
print(i, " "); //0.4 0.3 0.2 0.1 0.0
}
print("\n----------------------\n");
ROUNDING AND ACCOUNTING:
NUM p("11.19"), discountRate("7.00"); //DECLARATION AND INITIALIZATION - PRICE -Toslink cable for soundbar
print("price=", p);
NUM d = round(p.pct(discountRate)); //DISCOUNT
NUM pd = round(p - d); //PRICE DISCOUNTED 7%
NUM temp = pd;
NUM p_noTAX = round(temp.spinoff(22)); //ITEM COST WITHOUT TAX 22%
NUM TAX = round(pd - p_noTAX); //TAX 22%
print(" PAYED=", pd, " discount="); print(d, " COST="); print(p_noTAX, " TAX="); print(TAX, "\n");
//price=11.19 PAYED=10.41 discount=0.78 COST=8.53 TAX=1.88
OUTPUT LOCALIZATION, FORMATTING AND SQUARENESS:
NUM amount ("1_000_000.9"); //DECLARATION AND INITIALIZATION
int SIGN = true;
int decs = 2;
char* p = amount.format(decs, ',', SIGN);
print("US localization => ", p, "\n"); free(p); //US localization => +1,000,000.90
p = amount.format(decs, '.', SIGN);
print("EU localization => ", p, "\n"); free(p); //EU localization => +1.000.000,90
#include "num7.h"
using namespace num7;
void asset() {
NUM DEPOSIT("10_000.00"), ANNUAL_CONTRIBUTION("1_000.00"), RATE("7.25"), YEARS(10), ANNUALS[10][4],
SQUARENESS_1, SQUARENESS_2, SQUARENESS_3;
for (int i = 0; i < YEARS; i++) {
ANNUALS[i][0] = i + 1; //year
ANNUALS[i][1] = DEPOSIT; //deposit
ANNUALS[i][2] = ((DEPOSIT * RATE) / 100).round();
ANNUALS[i][3] = ANNUALS[i][1] + ANNUALS[i][2] + ANNUAL_CONTRIBUTION; DEPOSIT = ANNUALS[i][3];
}
int width = 12;
for (int i = 0; i < YEARS; i++) {
print(ANNUALS[i][0].to_i32(), "\t");
char* p = ANNUALS[i][1].format(2, '.');
print(p, "\t"); free(p);
char* p2 = ANNUALS[i][2].format(2, '.');
if (strlen(p2) < 8) print(" ");
print(p2, "\t"); free(p2);
char* p3 = ANNUALS[i][3].format(2, '.');
print(p3, "\n"); free(p3);
}
for (int i = 0; i < YEARS; i++) {
SQUARENESS_1 += ANNUALS[i][1];
SQUARENESS_2 += ANNUALS[i][2];
SQUARENESS_3 += ANNUALS[i][3];
}
print("--------------------------------------------------\n");
print(" ");
char* p = SQUARENESS_1.format(2, '.');
print(p, " "); free(p);
char* p2 = SQUARENESS_2.format(2, '.');
print(p2, " "); free(p2);
char* p3 = SQUARENESS_3.format(2, '.');
print(p3, " "); free(p3);
NUM SQUARENESS((SQUARENESS_1 + SQUARENESS_2 == SQUARENESS_3 - ANNUAL_CONTRIBUTION * YEARS));
print(" => SQUARENESS=", (SQUARENESS ? "SUCCESS" : "FAILURE"), "\n");
}
int main() {
asset(); //FUNCTION CALL
return 0;
}
/* Video output:
1 10.000,00 725,00 11.725,00
2 11.725,00 850,06 13.575,06
3 13.575,06 984,19 15.559,25
4 15.559,25 1.128,05 17.687,30
5 17.687,30 1.282,33 19.969,63
6 19.969,63 1.447,80 22.417,43
7 22.417,43 1.625,26 25.042,69
8 25.042,69 1.815,60 27.858,29
9 27.858,29 2.019,73 30.878,02
10 30.878,02 2.238,66 34.116,68
------------------------------------------------------------
194.712,67 14.116,68 218.829,35 => SQUARENESS=SUCCESS */
ROUNDING TYPES:
NUM r("2.85"), //DECLARATION AND INITIALIZATION
area(r * r * pi()),
temp(area), temp2(area);
print(area, "\n"); //25.51758632878309557941282088068773875
print("\n---- NUM floor rounding ----\n");
print(area.round_floor(1), " (1 decs)\n"); //25.5 (1 decs)
print("\n---- NUM ceil rounding ----\n");
print(temp.round_ceil(1), " (1 decs)\n"); //25.6 (1 decs)
print("\n---- NUM standard rounding ----\n");
print(temp2.round(2), " (2 decs)\n"); //25.52 (2 decs)
print("\n---- NUM bank rounding ----\n");
print(temp2.round_bank(-1), " (united )\n"); //20.0 (united)
ARBITRARY PRECISION ARITHMETIC:
NUM a("18446744073709551615.05"), b("79557855184810661726.96"); //DECLARATION AND INITIALIZATION
a.print(" "); b.print(" operands\n"); //18446744073709551615.05 79557855184810661726.96 operands
add(a, b).print(" sum\n"); //98004599258520213342.01 sum
sub(a, b).print(" dif\n"); //-61111111111101110111.91 dif
mul(a, b).print(" pro\n"); //1467583393647448798475303745564903690126.748 pro
div(a, b).print(" quo\n"); //0.2318657790718249449152307927340895034397 quo
mod(a, b).print(" rem\n"); //18446744073709551615.05 rem
print("-----------------------------------------\n");
a = 3; b = 100; //INITIALIZATION
a.print(" "); b.print(" operands\n"); //3.0 100.0 operands
pow(a, b).print(" exp\n"); //515377520732011331036461129765621272702107522001.0 exp
SCIENTIFIC NOTATION AND HIGH PRECISION RESULTS:
NUM a("1.23456789"), //STANDARD NUMERIC NOTATION
b("9.87654321"),
MUL(a * b); //MULTIPLICATION
double ieee754 = 1.23456789 * 9.87654321;
NUM c; c.from_double(ieee754);
print(c, " => MUL ieee754 - PRECISION FAILURE\n"); //12.193263111263525 => MUL ieee754 - PRECISION FAILURE
print(MUL, " => MUL num7.h - PRECISION SUCCESS\n"); //12.1932631112635269 => MUL num7.h - PRECISION SUCCESS
print("-----------------------------------------\n");
a = "1.23456789e300"; //SCIENTIFIC NUMERIC NOTATION
b = "9.87654321e300";
ieee754 = 1.23456789e300 * 9.87654321e300; //MULTIPLICATION
print(from_double(ieee754), " => MUL ieee754 - CAPACITY FAILURE\n");
MUL = a * b;
char* p = MUL.to_sci();
print(p, " => MUL num7.h - PRECISION SUCCESS\n"); free(p); //inf => MUL ieee754 - CAPACITY FAILURE
print("-----------------------------------------\n"); //1.21932631112635269e601 = > MUL num7.h - PRECISION SUCCESS
double TO NUM CONVERSION ARRAY:
double listing[] = { 5.14, -2.1, 5.0, -2543.9935500002972, -0.02 };
NUM L[5];
int elements = sizeof(listing) / sizeof(listing[0]);
print("elements="); print(elements, "\n"); //elements=5
print("----------------------\n"); //----------------------
for (int i = 0; i < elements; i++)
L[i] = L[i].from_double(listing[i]).round(5); //RECTIFIED BINARY APPROXIMATION!
for (NUM l : L) print(l, "\n"); //5.14 -2.1 5.0 -2543.99355 -0.02
print("----------------------\n\n");
EFFECTIVE EXPRESSIONS NEED OF TEMPORARY VARIABLES:
NUM base(3), h(4); //RIGHT-ANGLE TRIANGLE BASE AND HEIGHT
NUM b2, h2; //TEMPORARY VARIABLES
print("base = ", base, " h = "); print(h, "\n"); //base = 3.0 h = 4.0
NUM hyp = sqr((b2 = base.x2()) + (h2 = h.x2())); //PYTHAGOREAN EXPRESSION NEEDS OF TEMPORARY VARs
print("HYPOTENUSE = "); hyp.print("\n"); //HYPOTENUSE = 5.0
NUM AREA = base * h / 2; //AREA EXPRESSION
print("AREA = "); AREA.print("\n"); //AREA = 6
ERROR HANDLING:
#include "num7.h"
#include <time.h>
using namespace num7;
int main() {
clock_t tic = clock(), toc = tic;
tic = clock();
NUM base = "3", h = "4"; //SYNTAX ERROR, RIGHT-ANGLE TRIANGLE BASE AND HEIGHT (ERROR ARGUMENT VALUE => NUM CONSTRUCTOR: [3])
if (error()) { //DETECT ERRORs (ERROR ARGUMENT VALUE => NUM CONSTRUCTOR: [4])
print("INITIALIZATION VARIABLEs ERROR\n");
base = "3.0"; h = "4.0"; //SYNTAX OK
error_clear(); //CLEAR ERROR
}
NUM b2, h2; //TEMPORARY VARIABLES
print("base = ", base, " h = "); print(h, "\n"); //base = 3.0 h = 4.0
NUM hyp = sqr((b2 = base.x2()) + (h2 = h.x2())); //PYTHAGOREAN EXPRESSION NEEDS OF TEMPORARY VARs
print("HYPOTENUSE = "); hyp.print("\n"); //HYPOTENUSE = 5.0
NUM AREA = base * h / 2; //AREA EXPRESSION
print("AREA = "); AREA.print("\n"); //AREA = 6
print("---------------------\n");
toc = clock();
printf("---------------------\n");
printf("ET: %.6fs", (double)(toc - tic) / CLOCKS_PER_SEC);
time_t now = time(NULL);
char* s_now = ctime(&now);
printf("\n%s*** PROGRAM OVER ***\n", s_now);
return 0;
}
Q. I usually try to add 0.1 to 0.2 in C++ with this code:
double a = 0.1, b = 0.2;
printf("%d\n", a + b == 0.3); //0 => false
and the comparing number result is:
0 (false)
How instead can it gets exactly 0.3?
A. Using NUM class:
NUM A("0.1"), B("0.2");
print(A + B == "0.3", "\n"); //1 => true
the comparing number result is:
1 (true)
Q. I have two double variables in my code:
double a = 123456.123, b = -123456789.123456;
How can i convert them in NUM type with exact decimal digits?
A. With from_double() and round() in-line functions:
double a = 123456.123, b = -123456789.123456;
NUM A, B;
const int MAX_DECIMAL_PRECISION = 6;
A = A.from_double(a).round(MAX_DECIMAL_PRECISION);
B = B.from_double(b).round(MAX_DECIMAL_PRECISION);
A.print("\n"); // 123456.123
B.print("\n"); //-123456789.123456
Q. I must enter many integer variables in my code:
NUM a("123.0") , b("456.0"), c("789.0");
Can i input them without double quotes and suffix .0?
A. Yes, this the way:
NUM a(123), b(456), c(789);
Q. I need managing zero division error in C++; How can do it?
A. num7 library supports hi-level execution workflow code for arithmetic operation errors:
#include "num7.h"
#include <time.h>
using namespace num7;
int main() {
clock_t tic = clock(), toc = tic;
tic = clock();
NUM a("3.6"), b("0.00");
print(a, " / "); print(b, " = ");
NUM c(a / b); //ERROR DIVISION BY ZERO => operator/: [S=0 CE=0.0e0 C=0.0 E=0 len_I=1 len_F=1]
while (error()) { //!!! EXCEPTION HANDLER !!!
static int err_count = 1; //DECLARATION AND INITALIZATION
error_clear(); //CLEAR ERROR (Error = 0) => GLOBAL VARIABLE
if (err_count == 1) b = "0.00"; //ZERO DIVISON AGAIN (NOT VALID DIVISOR)
else b = "0.16"; //VALID DIVISOR
print(a, " / "); print(b, " = ");
c = a / b;
if (err_count > 2) { print("SYSTEM RESET\n"); break; } //3 TIMES RETRIES AT ALL
err_count++;
}
if (!error()) print(c, "\n"); //3.6 / 0.16 = 22.5 //OK
else { print("SYSTEM RESET -EXIT\n"); return 1; }
print("---------------------\n");
toc = clock();
printf("---------------------\n");
printf("ET: %.6fs", (double)(toc - tic) / CLOCKS_PER_SEC);
time_t now = time(NULL);
char* s_now = ctime(&now);
printf("\n%s*** PROGRAM OVER ***\n", s_now);
return 0;
}
Q. I need getting result in scientific notation; How can code it?
A. With the following code:
NUM a("85.0e1900"), b = "13.0e1940", PRO = a * b;
PRO = PRO.into_sci();
PRO.print_exp("\n"); //1.105e3843
//PRO.print("\n"); //STANDARD NUMERIC NOTATION 1105...0