Description
select 1 判断
select 1 成功返回,只能说明这个库的进程还在,并不能说明主库没问题
set global innodb_thread_concurrency=3;
CREATE TABLE `t` (
`id` int(11) NOT NULL,
`c` int(11) DEFAULT NULL,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
insert into t values(1,1)
设置 innodb_thread_concurrency 参数的目的是,控制 InnoDB 的并发线程上限。也就是说,一旦并发线程数达到这个值,InnoDB 在接收到新请求的时候,就会进入等待状态,直到有线程退出。
这里,我把 innodb_thread_concurrency 设置成 3,表示 InnoDB 只允许 3 个线程并行执行。而在我们的例子中,前三个 session 中的 sleep(100),使得这三个语句都处于“执行”状态,以此来模拟大查询。
你看到了, session D 里面,select 1 是能执行成功的,但是查询表 t 的语句会被堵住。也就是说,如果这时候我们用 select 1 来检测实例是否正常的话,是检测不出问题的
查表判断
为了能够检测 InnoDB 并发线程数过多导致的系统不可用情况,我们需要找一个访问 InnoDB 的场景。一般的做法是,在系统库(mysql 库)里创建一个表,比如命名为 health_check,里面只放一行数据,然后定期执行:
mysql> select * from mysql.health_check;
使用这个方法,我们可以检测出由于并发线程过多导致的数据库不可用的情况,但是无法检测磁盘空间满的情况
更新事务要写 binlog,而一旦 binlog 所在磁盘的空间占用率达到 100%,那么所有的更新语句和事务提交的 commit 语句就都会被堵住。但是,系统这时候还是可以正常读数据的
更新判断
既然要更新,就要放个有意义的字段,常见做法是放一个 timestamp 字段,用来表示最后一次执行检测的时间。这条更新语句类似于:
mysql> update mysql.health_check set t_modified=now();
节点可用性的检测都应该包含主库和备库。如果用更新来检测主库的话,那么备库也要进行更新检测。
但备库的检测也是要写 binlog 的。由于我们一般会把数据库 A 和 B 的主备关系设计为双 M 结构,所以在备库 B 上执行的检测命令,也要发回给主库 A。
但是,如果主库 A 和备库 B 都用相同的更新命令,就可能出现行冲突,也就是可能会导致主备同步停止。所以,现在看来 mysql.health_check 这个表就不能只有一行数据了。
为了让主备之间的更新不产生冲突,我们可以在 mysql.health_check 表上存入多行数据,并用 A、B 的 server_id 做主键。
mysql> CREATE TABLE `health_check` (
`id` int(11) NOT NULL,
`t_modified` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
PRIMARY KEY (`id`)
) ENGINE=InnoDB;
/* 检测命令 */
insert into mysql.health_check(id, t_modified) values (@@server_id, now()) on duplicate key update t_modified=now();
由于 MySQL 规定了主库和备库的 server_id 必须不同(否则创建主备关系的时候就会报错),这样就可以保证主、备库各自的检测命令不会发生冲突
更新判断是一个相对比较常用的方案,不过存在判定慢的问题
首先,所有的检测逻辑都需要一个超时时间 N。执行一条 update 语句,超过 N 秒后还不返回,就认为系统不可用。
你可以设想一个日志盘的 IO 利用率已经是 100% 的场景。这时候,整个系统响应非常慢,已经需要做主备切换了。
但是你要知道,IO 利用率 100% 表示系统的 IO 是在工作的,每个请求都有机会获得 IO 资源,执行自己的任务。而我们的检测使用的 update 命令,需要的资源很少,所以可能在拿到 IO 资源的时候就可以提交成功,并且在超时时间 N 秒未到达之前就返回给了检测系统。
检测系统一看,update 命令没有超时,于是就得到了“系统正常”的结论。
也就是说,这时候在业务系统上正常的 SQL 语句已经执行得很慢了,但是 DBA 上去一看,HA 系统还在正常工作,并且认为主库现在处于可用状态
之所以会出现这个现象,根本原因是我们上面说的所有方法,都是基于外部检测的。外部检测天然有一个问题,就是随机性。
因为,外部检测都需要定时轮询,所以系统可能已经出问题了,但是却需要等到下一个检测发起执行语句的时候,我们才有可能发现问题。而且,如果你的运气不够好的话,可能第一次轮询还不能发现,这就会导致切换慢的问题
内部统计
MySQL 5.6 版本以后提供的 performance_schema 库的 file_summary_by_event_name 表里统计了每次 IO 请求的时间
file_summary_by_event_name 表里有很多行数据,我们先来看看 event_name='wait/io/file/innodb/innodb_log_file’这一行:
图中这一行表示统计的是 redo log 的写入时间,第一列 EVENT_NAME 表示统计的类型。
接下来的三组数据,显示的是 redo log 操作的时间统计。
第一组五列,是所有 IO 类型的统计。其中,COUNT_STAR 是所有 IO 的总次数,接下来四列是具体的统计项, 单位是皮秒;前缀 SUM、MIN、AVG、MAX,顾名思义指的就是总和、最小值、平均值和最大值。
第二组六列,是读操作的统计。最后一列 SUM_NUMBER_OF_BYTES_READ 统计的是,总共从 redo log 里读了多少个字节。
第三组六列,统计的是写操作。
最后的第四组数据,是对其他类型数据的统计。在 redo log 里,你可以认为它们就是对 fsync 的统计。
在 performance_schema 库的 file_summary_by_event_name 表里,binlog 对应的是 event_name = "wait/io/file/sql/binlog"这一行。各个字段的统计逻辑,与 redo log 的各个字段完全相同
因为我们每一次操作数据库,performance_schema 都需要额外地统计这些信息,所以我们打开这个统计功能是有性能损耗的。
所以,建议只打开自己需要的项进行统计。你可以通过下面的方法打开或者关闭某个具体项的统计,如果要打开 redo log 的时间监控,可以执行这个语句:
mysql> update setup_instruments set ENABLED='YES', Timed='YES' where name like '%wait/io/file/innodb/innodb_log_file%';
开启了 redo log 和 binlog 这两个统计信息之后,可以通过 MAX_TIMER 的值来判断数据库是否出问题了。比如,你可以设定阈值,单次 IO 请求时间超过 200 毫秒属于异常,然后使用类似下面这条语句作为检测逻辑:
mysql> select event_name,MAX_TIMER_WAIT FROM performance_schema.file_summary_by_event_name where event_name in ('wait/io/file/innodb/innodb_log_file','wait/io/file/sql/binlog') and MAX_TIMER_WAIT>200*1000000000;
发现异常后,取到你需要的信息,再通过下面这条语句:
mysql> truncate table performance_schema.file_summary_by_event_name;
把之前的统计信息清空。这样如果后面的监控中,再次出现这个异常,就可以加入监控累积值了
总结
优先考虑 update 系统表,然后再配合增加检测 performance_schema 的信息