Skip to content

Acquisition function maximizer Initialization for Bayesian Optimization

Notifications You must be signed in to change notification settings

gloaming2dawn/AIBO

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Acquisition function maximizer Initialization for Bayesian Optimization (AIBO)

This is the code-release for the AIBO method from Unleashing the Potential of Acquisition Functions in High- Dimensional Bayesian Optimization: An empirical study to understand the role of acquisition function maximizer initialization submitted to Transactions on Machine Learning Research (TMLR).

Note that AIBO is is a minimization algorithm, so please make sure you reformulate potential maximization problems.

Installation

First, make sure you have a Python 3 environment installed. We recommend miniconda3 or anaconda3.

conda create -n test python=3.9.9

Then install the package via pip:

pip install -r requirements.txt --use-deprecated=legacy-resolver

Quick Test

Using AIBO with UCB1.96 as the acquisition function to optimize 100D Ackley function

cd AIBO
python run.py --func=Ackley --dim=100 --method=AIBO_mixed-grad-UCB1.96 --iters=5000 --batch-size=10

Using standard BO (BO-grad in the paper) for comparison

python run.py --func=Ackley --dim=100 --method=AIBO_random-grad-UCB1.96 --iters=5000 --batch-size=10

Change acquisition function from UCB1.96 to UCB4 or EI

python run.py --func=Ackley --dim=100 --method=AIBO_mixed-grad-UCB4 --iters=5000 --batch-size=10
python run.py --func=Ackley --dim=100 --method=AIBO_mixed-grad-EI --iters=5000 --batch-size=10

Use single heuristic initialization strategy (GA/CMA-ES) for gradient-based acquisition function maximizer

python run.py --func=Ackley --dim=100 --method=AIBO_ga-grad-UCB1.96 --iters=5000 --batch-size=10
python run.py --func=Ackley --dim=100 --method=AIBO_cmaes-grad-UCB1.96 --iters=5000 --batch-size=10

Test other functions

python run.py --func=Rosenbrock --dim=100 --method=AIBO_mixed-grad-UCB1.96 --iters=5000 --batch-size=10
python run.py --func=Rastrigin --dim=100 --method=AIBO_mixed-grad-UCB1.96 --iters=5000 --batch-size=10
python run.py --func=Griewank --dim=100 --method=AIBO_mixed-grad-UCB1.96 --iters=5000 --batch-size=10

For GPU acceleration, install cuda-based torch version and add --device=cuda to the command, for example

python run.py --func=Ackley --dim=100 --method=AIBO_mixed-grad-UCB1.96 --iters=5000 --batch-size=10 --device=cuda

About

Acquisition function maximizer Initialization for Bayesian Optimization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages