Skip to content

glp-92/Nvidia_CUDA_Dockerize

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Nvidia Cuda Container Implementation

This repository provides implementation paths to dockerize some DL Python frameworks and libraries.

Tested on Ubuntu 20.04 LTS with Nvidia GTX 1050.

Requirements:

  1. Install Docker as container manager. Found some privilege uncompatibilities with Docker Desktop

  2. Install Nvidia Container Toolkit

    curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
      && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
        sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
        sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list \
      && \
        sudo apt-get update
    
    sudo apt-get update \
        && sudo apt-get install -y nvidia-container-toolkit
    
  3. To confirm succesful install:

    nvidia-ctk --version
    

Check the following implementation docs:

To do list:

  • Finish current implementations
  • Kubernetes Cluster for highly available infering context
  • Kubernetes Cluster for GPU management
  • Provide safe API to inject custom prediction func
  • Code and model optimizations

Releases

No releases published

Packages

No packages published

Languages