Skip to content

golbin/WaveNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

WaveNet

Yet another WaveNet implementation in PyTorch.

The purpose of this implementation is Well-structured, reusable and easily understandable.

Prerequisites

  • System

    • Linux or macOS
    • CPU or (NVIDIA GPU + CUDA CuDNN)
      • It can run on Single CPU/GPU or Multi GPUs.
    • Python 3
  • Libraries

    • PyTorch >= 0.3.0
    • librosa >= 0.5.1

Training

python train.py \
    --data_dir=./test/data \
    --output_dir=./outputs

Use python train.py --help to see more options.

Generating

It's just for testing. You need to modify for real world.

python generate.py \
    --model=./outputs/model \
    --seed=./test/data/helloworld.wav \
    --out=./output/helloworld.wav

Use python generate.py --help to see more options.

File structures

networks.py and model.py is main implementations.

  • wavenet
    • config.py : Training options
    • networks.py : The neural network architecture of WaveNet
    • model.py : Calculate loss and optimizing
    • utils
      • data.py : Utilities for loading data
    • test
      • Some tests for check if it's correct model like casual, dilated..
  • train.py : A script for WaveNet training
  • generate.py : A script for generating with pre-trained model

TODO

  • Add some nice samples
  • Global conditions
  • Local conditions
  • Faster generating
  • Parallel WaveNet
  • General Generator

References

About

Yet another WaveNet implementation in PyTorch.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages