Skip to content
This repository was archived by the owner on Nov 23, 2018. It is now read-only.
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
129 changes: 129 additions & 0 deletions convex/lp/convert.go
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
package lp

import (
"github.com/gonum/floats"
"github.com/gonum/matrix/mat64"
)

// Convert converts a General-form LP into a standard form LP.
// The general form of an LP is:
// minimize c^T * x
// s.t G * x <= h
// A * x = b
// And the standard form is:
// minimize cNew^T * x
// s.t aNew * x = bNew
// x >= 0
// If there are no constraints of the given type, the inputs may be nil.
func Convert(c []float64, g mat64.Matrix, h []float64, a mat64.Matrix, b []float64) (cNew []float64, aNew *mat64.Dense, bNew []float64) {
nVar := len(c)
nIneq := len(h)

// Check input sizes.
if g == nil {
if nIneq != 0 {
panic(badShape)
}
} else {
gr, gc := g.Dims()
if gr != nIneq {
panic(badShape)
}
if gc != nVar {
panic(badShape)
}
}

nEq := len(b)
if a == nil {
if nEq != 0 {
panic(badShape)
}
} else {
ar, ac := a.Dims()
if ar != nEq {
panic(badShape)
}
if ac != nVar {
panic(badShape)
}
}

// Convert the general form LP.
// Derivation:
// 0. Start with general form
// min. c^T * x
// s.t. G * x <= h
// A * x = b
// 1. Introduce slack variables for each constraint
// min. c^T * x
// s.t. G * x + s = h
// A * x = b
// s >= 0
// 2. Add non-negativity constraints for x by splitting x
// into positive and negative components.
// x = xp - xn
// xp >= 0, xn >= 0
// This makes the LP
// min. c^T * xp - c^T xn
// s.t. G * xp - G * xn + s = h
// A * xp - A * xn = b
// xp >= 0, xn >= 0, s >= 0
// 3. Write the above in standard form:
// xt = [xp
// xn
// s ]
// min. [c^T, -c^T, 0] xt
// s.t. [G, -G, I] xt = h
// [A, -A, 0] xt = b
// x >= 0

// In summary:
// Original LP:
// min. c^T * x
// s.t. G * x <= h
// A * x = b
// Standard Form:
// xt = [xp; xn; s]
// min. [c^T, -c^T, 0] xt
// s.t. [G, -G, I] xt = h
// [A, -A, 0] xt = b
// x >= 0

// New size of x is [xp, xn, s]
nNewVar := nVar + nVar + nIneq

// Construct cNew = [c; -c; 0]
cNew = make([]float64, nNewVar)
copy(cNew, c)
copy(cNew[nVar:], c)
floats.Scale(-1, cNew[nVar:2*nVar])

// New number of equality constraints is the number of total constraints.
nNewEq := nIneq + nEq

// Construct bNew = [h, b].
bNew = make([]float64, nNewEq)
copy(bNew, h)
copy(bNew[nIneq:], b)

// Construct aNew = [G, -G, I; A, -A, 0].
aNew = mat64.NewDense(nNewEq, nNewVar, nil)
if nIneq != 0 {
aView := (aNew.View(0, 0, nIneq, nVar)).(*mat64.Dense)
aView.Copy(g)
aView = (aNew.View(0, nVar, nIneq, nVar)).(*mat64.Dense)
aView.Scale(-1, g)
aView = (aNew.View(0, 2*nVar, nIneq, nIneq)).(*mat64.Dense)
for i := 0; i < nIneq; i++ {
aView.Set(i, i, 1)
}
}
if nEq != 0 {
aView := (aNew.View(nIneq, 0, nEq, nVar)).(*mat64.Dense)
aView.Copy(a)
aView = (aNew.View(nIneq, nVar, nEq, nVar)).(*mat64.Dense)
aView.Scale(-1, a)
}
return cNew, aNew, bNew
}
Loading