Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

assoc store stderr: ProvisionedThroughputExceededException #101

Closed
olgabot opened this issue Feb 6, 2019 · 8 comments
Closed

assoc store stderr: ProvisionedThroughputExceededException #101

olgabot opened this issue Feb 6, 2019 · 8 comments

Comments

@olgabot
Copy link
Contributor

olgabot commented Feb 6, 2019

Hello,
A few more of us at Biohub are using reflow at once and I'm starting to see this error:

reflow: assoc store stderr: ProvisionedThroughputExceededException: The level of configured provisioned throughput for one or more global secondary indexes of the table was exceeded. Consider increasing your provisioning level for the under-provisioned global secondary indexes with the UpdateTable API

How can I increase the provisioning level? Is this an AWS-level change or a Reflow-level change?

Warmest,
Olga

@prasadgopal
Copy link
Collaborator

prasadgopal commented Feb 6, 2019 via email

@mariusae
Copy link
Collaborator

mariusae commented Feb 6, 2019

It can also be made "elastic" now -- you pay for what you use without having to provision. That's probably the best choice for something like Reflow.

@olgabot
Copy link
Contributor Author

olgabot commented Feb 7, 2019

Here's what the table configuration looks like now - is this correct?

screen shot 2019-02-06 at 5 58 47 pm

It's now on "On Demand" and yet we're still getting the ProvisionedThroughputExceededException error.

@olgabot
Copy link
Contributor Author

olgabot commented Feb 7, 2019

Hello, I'm not sure what else to change because the ProvisionedThroughputExceededException error keeps happening even though I changed the usage on both czbiohub-reflow-quickstart and czbiohub-reflow-quickstart-cache tables to be "On-demand."

Here's a screenshot with reflow runbatch -retry, reflow config, watch aguamenti status (shows how many jobs are canceled/done/running/waiting for a path by parsing reflow listbatch) and watch reflow ps:

screen shot 2019-02-07 at 11 32 14 am

 Thu  7 Feb - 11:32  ~ 
  reflow config | grep repository
zsh: correct 'config' to '.config' [nyae]? n
repository: s3,czbiohub-reflow-quickstart-cache

And here's a reflow -log=debug -cache=off run -trace output:

(aguamenti)
 Thu  7 Feb - 11:36  ~/code/kmer-hashing/sourmash/maca/10x_spleen_kidney   origin ☊ olgabot/tissue-subset ✔ 1☀ 
  aguamenti check-batch --debug
---
Found sample with id "Spleen_10X_P4_7"!
Running 'reflow -log=debug -cache=off run -trace /home/olga/code/kmer-hashing/sourmash/maca/10x_spleen_kidney/../../../reflow/sourmash_compute_10x.rf -tenx s3://czbiohub-maca/10x_data/10X_P4_7 -output s3://olgabot-maca/10x/sourmash_compute/ksizes=21,27,33,51_num_hashes=5000/Spleen_10X_P4_7.sig -ksizes 21,27,33,51 -num_hashes 5000'
---
2019/02/07 11:47:42 reflow version 0.6.7 (go1.10)
2019/02/07 11:47:42 reflowlet image grailbio/reflowlet:1531508213
2019/02/07 11:47:42 run ID: e3457aec
2019/02/07 11:47:43 evaluating program /home/olga/code/kmer-hashing/reflow/sourmash_compute_10x.rf
        params:
                BAM_FILENAME=possorted_genome_bam.bam
                BARCODES=barcodes.tsv
                dna=true
                ksizes=21,27,33,51
                num_hashes=5000
                output=s3://olgabot-maca/10x/sourmash_compute/ksizes=21,27,33,51_num_hashes=5000/Spleen_10X_P4_7.sig
                processes=8
                protein=true
                scaled=0
                tenx=s3://czbiohub-maca/10x_data/10X_P4_7
        arguments:
        -tenx
        s3://czbiohub-maca/10x_data/10X_P4_7
        -output
        s3://olgabot-maca/10x/sourmash_compute/ksizes=21,27,33,51_num_hashes=5000/Spleen_10X_P4_7.sig
        -ksizes
        21,27,33,51
        -num_hashes
        5000
2019/02/07 11:47:43 ec2cluster: pending{}
2019/02/07 11:47:43 ec2cluster: pending{}
2019/02/07 11:47:43 ec2cluster: allocate {mem:16.0GiB cpu:1 disk:1.0GiB}
2019/02/07 11:47:43 ec2cluster: pending{} waiter0{mem:16.0GiB cpu:1 disk:1.0GiB}
2019/02/07 11:47:43 ec2cluster: launch r4.xlarge{mem:28.4GiB cpu:4 disk:2.4TiB intel_avx:4 intel_avx2:4} pending{mem:28.4GiB cpu:4 disk:2.4TiB intel_avx:4 intel_avx2:4}
2019/02/07 11:47:44 ec2cluster: EC2RunInstances {
  BlockDeviceMappings: [{
      DeviceName: "/dev/xvda",
      Ebs: {
        DeleteOnTermination: true,
        VolumeSize: 200,
        VolumeType: "gp2"
      }
    },{
      DeviceName: "/dev/xvdb",
      Ebs: {
        DeleteOnTermination: true,
        VolumeSize: 2500,
        VolumeType: "gp2"
      }
    }],
  ClientToken: "1af5f13624606db8",
  DisableApiTermination: false,
  DryRun: false,
  EbsOptimized: true,
  IamInstanceProfile: {
    Arn: ""
  },
  ImageId: "ami-4296ec3a",
  InstanceInitiatedShutdownBehavior: "terminate",
  InstanceType: "r4.xlarge",
  MaxCount: 1,
  MinCount: 1,
  Monitoring: {
    Enabled: true
  },
  SecurityGroupIds: ["sg-661d7f19"],
 UserData: "bigSHAstring",}
}
2019/02/07 11:47:45 ec2cluster: launched instance i-0db3024931f04f08d: r4.xlarge{mem:28.4GiB cpu:4 disk:2.4TiB intel_avx:4 intel_avx2:4}
2019/02/07 11:48:43 ec2cluster: pending{mem:28.4GiB cpu:4 disk:2.4TiB intel_avx:4 intel_avx2:4} waiter0{mem:16.0GiB cpu:1 disk:1.0GiB}
2019/02/07 11:48:54 ec2cluster: added instance r4.xlarge resources{mem:28.4GiB cpu:4 disk:2.4TiB intel_avx:4 intel_avx2:4} pending{} available{mem:12.4GiB cpu:3 disk:2.4TiB intel_avx:4 intel_avx2:4} npending:0 waiters:0 notified:1
2019/02/07 11:48:54 ec2cluster: pending{}
2019/02/07 11:48:54 accepted alloc ec2-18-237-94-146.us-west-2.compute.amazonaws.com:9000/cf71f85ba64ce3ae
2019/02/07 11:48:54 run state: eval alloc ec2-18-237-94-146.us-west-2.compute.amazonaws.com:9000/cf71f85ba64ce3ae
2019/02/07 11:48:54 evaluating with configuration: executor *client.clientAlloc transferer *repository.Manager flags cacheextern,nocache,nogc,norecomputeempty,topdown flowconfig hashv2 cachelookuptimeout 1m0s
2019/02/07 11:48:54 mutate flow e9e824ed state FlowInit {} k deps 63b7f22a: FlowTODO
2019/02/07 11:48:54 mutate flow 63b7f22a state FlowInit {} k deps 633d94ae: FlowTODO
2019/02/07 11:48:54 mutate flow 633d94ae state FlowInit {} k deps f42688cd: FlowTODO
2019/02/07 11:48:54 mutate flow f42688cd state FlowInit {} k deps e3b25ffc: FlowTODO
2019/02/07 11:48:54 mutate flow e3b25ffc state FlowInit {} k deps fd2bb232: FlowTODO
2019/02/07 11:48:54 mutate flow fd2bb232 state FlowInit {} coerce deps 3cb19a77: FlowTODO
2019/02/07 11:48:54 mutate flow 3cb19a77 state FlowInit {} exec image czbiohub/kmer-hashing cmd "\n        /opt/conda/bin/sourmash compute \\\n            --track-abundance \\\n            --protein \\\n            --dna \\\n             \\\n            --scaled 0 \\\n            --ksizes 21,27,33,51 \\\n            --output %s \\\n            %s\n    " deps 124ba7ed: FlowTODO
2019/02/07 11:48:54 mutate flow 124ba7ed state FlowInit {} coerce deps 5291aef1: FlowTODO
2019/02/07 11:48:54 mutate flow 5291aef1 state FlowInit {} k deps cb1cb78e: FlowTODO
2019/02/07 11:48:54 mutate flow cb1cb78e state FlowInit {} k deps 2d4e6bb3: FlowTODO
2019/02/07 11:48:54 mutate flow 2d4e6bb3 state FlowInit {} k deps cd78382a: FlowTODO
2019/02/07 11:48:54 mutate flow cd78382a state FlowInit {} k deps 479d0186: FlowTODO
2019/02/07 11:48:54 mutate flow 479d0186 state FlowInit {} k deps ff9993d2: FlowTODO
2019/02/07 11:48:54 mutate flow ff9993d2 state FlowInit {} k deps b04a908a: FlowTODO
2019/02/07 11:48:54 mutate flow b04a908a state FlowInit {} coerce deps 0e03c6b5: FlowTODO
2019/02/07 11:48:54 mutate flow 0e03c6b5 state FlowInit {} exec image czbiohub/bam2fastx cmd "\n            bam2fastx fasta %s --all-cells-in-one-file --output %s\n    " deps 33c685c6: FlowTODO
2019/02/07 11:48:54 mutate flow 33c685c6 state FlowInit {} coerce deps ceed79ad: FlowTODO
2019/02/07 11:48:54 mutate flow ceed79ad state FlowInit {} k deps 76e4d495: FlowTODO
2019/02/07 11:48:54 mutate flow 76e4d495 state FlowInit {} k deps 9f3f92a6: FlowTODO
2019/02/07 11:48:54 mutate flow 9f3f92a6 state FlowInit {} k deps d9183eca: FlowTODO
2019/02/07 11:48:54 mutate flow d9183eca state FlowInit {} k deps 29b3ebe2,7a604e2f,6f220341: FlowTODO
2019/02/07 11:48:54 mutate flow 29b3ebe2 state FlowInit {} k deps ea7dd411: FlowTODO
2019/02/07 11:48:54 mutate flow ea7dd411 state FlowInit {} k deps 1d4996e5: FlowTODO
2019/02/07 11:48:54 mutate flow 1d4996e5 state FlowInit {} k deps 9820e550: FlowTODO
2019/02/07 11:48:54 mutate flow 9820e550 state FlowInit {} k deps 6ffadddd: FlowTODO
2019/02/07 11:48:54 mutate flow 6ffadddd state FlowInit {} coerce deps aa06eef7: FlowTODO
2019/02/07 11:48:54 mutate flow aa06eef7 state FlowInit {} intern url "s3://czbiohub-maca/10x_data/10X_P4_7/": FlowTODO
2019/02/07 11:48:54 mutate flow aa06eef7 state FlowTODO {} intern url "s3://czbiohub-maca/10x_data/10X_P4_7/": FlowReady
2019/02/07 11:48:54 mutate flow 7a604e2f state FlowInit {} k deps b2de843f: FlowTODO
2019/02/07 11:48:54 mutate flow b2de843f state FlowInit {} k deps 674e18b1: FlowTODO
2019/02/07 11:48:54 mutate flow 674e18b1 state FlowInit {} k deps 9820e550: FlowTODO
2019/02/07 11:48:54 mutate flow 6f220341 state FlowInit {} k deps 0ff2799e: FlowTODO
2019/02/07 11:48:54 mutate flow 0ff2799e state FlowInit {} k deps b6a16278: FlowTODO
2019/02/07 11:48:54 mutate flow b6a16278 state FlowInit {} k deps 9820e550: FlowTODO
2019/02/07 11:48:54 mutate flow aa06eef7 state FlowReady {} intern url "s3://czbiohub-maca/10x_data/10X_P4_7/": FlowRunning, map[]
2019/02/07 11:49:12  ->  sourmash_compute_10x.Main.tenx_folder aa06eef7 run  intern s3://czbiohub-maca/10x_data/10X_P4_7/
2019/02/07 11:49:12 sourmash_compute_10x.Main.tenx_folder aa06eef7 /home/olga/code/kmer-hashing/sourmash/maca/10x_spleen_kidney/../../../reflow/sourmash_compute_10x.rf:70:26:
        sha256:aa06eef7af2a99660ec7dc619b2440703279c0a0b278aac02dd439e556e4f932
2019/02/07 11:49:43 ec2cluster: pending{}
ec2cluster: 1 instances: r4.xlarge:1 (<=$0.3/hr), total{mem:28.4GiB cpu:4 disk:2.4TiB
e3457aec: elapsed: 50s, running:1, completed: 0/3
  sourmash_compute_10x.Main.tenx_folder:  intern s3://czbiohub-maca/10x_data/10X_  49

@prasadgopal
Copy link
Collaborator

prasadgopal commented Feb 7, 2019 via email

@olgabot
Copy link
Contributor Author

olgabot commented Feb 8, 2019

Yes, they both do:

screen shot 2019-02-07 at 4 33 48 pm

screen shot 2019-02-07 at 4 33 42 pm

Does that look right?

@prasadgopal
Copy link
Collaborator

prasadgopal commented Feb 11, 2019 via email

@olgabot
Copy link
Contributor Author

olgabot commented Feb 12, 2019

Hello,
Yes I can file a ticket. This is the correct dynamoDB table:

 Tue 12 Feb - 07:38  ~/code/kmer-hashing/sourmash/maca/10x_spleen_kidney   origin ☊ olgabot/tissue-subset ↑1 5☀ 4● 
  reflow config | grep dynamodb
assoc: dynamodb,czbiohub-reflow-quickstart

Warmest,
Olga

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants