Skip to content

graph-lr/graph-aware-logistic-regression

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Graph-aware Logistic Regression

This repository contains the source code to reproduce experiments in the paper: Graph as a Feature: A Graph-Aware Non-Neural Model for Node Classification.

Usage

The src/main.py file can be used with the following parameters: For a specific model, the src/main.py can be used with the following parameters:

--dataset         Graph dataset {cora, pubmed, ...}
--undirected      If true, force graph to be undirected 
--randomstate     Random state seed (default=8)
--k               Value for k-fold splits
--stratified      If true, perform stratified split in training folds (default=true)
--model           Model name {Diffusion, GCN, ...}
--use_features    [optional] If true, use features as input (for baseline models)
--use_concat      [optional] If true, use concatenation of adajcency and feature matrices as input (for baseline models)

For example, running expriment on Cora for the Graph-aware Logistic Regression model is done with:

python main.py --dataset=cora --undirected=true --penalized=true --randomstate=8 --k=8 --stratified=true --model=Logistic_regression --use_concat=true

Datasets

We use the following graph datasets in our experiments. All datasets are available in the \data directory.

Dataset $$|V|$$ $|E|$ $L$ $C$ $\delta_A$
Cora 2708 10556 1433 7 2.88e-03
Pubmed* 19717 88651 500 3 4.56e-04
Citeseer 3327 9104 3703 6 1.65e-03
Actor 7600 30019 932 5 1.04e-03
CS 18333 163788 6805 15 9.75e-04
Photo 7650 238162 745 8 8.14e-03
Cornell 183 298 1703 5 1.79e-02
Wisconsin 251 515 1703 5 1.64e-02
Wikivitals 10011 824999 37845 11 8.23e-03
Wikivitals-fr 9945 558427 28198 11 5.65e-03
Wikischools 4403 112834 20527 16 5.82e-03
Wikivitals+ 45149 3946850 85512 11 1.93e-03
ogbn-arxiv 169343 1166246 85512 40 8.14e-05

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages