-
Notifications
You must be signed in to change notification settings - Fork 623
/
Tutorial_Part2_ballgown.R
70 lines (50 loc) · 2.63 KB
/
Tutorial_Part2_ballgown.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
# Load libraries needed for this analysis
library(ballgown)
library(genefilter)
library(dplyr)
library(devtools)
# Define a path for the output PDF to be written
outfile="~/workspace/rnaseq/de/ballgown/ref_only/Tutorial_Part2_ballgown_output.pdf"
# Load phenotype data
pheno_data = read.csv("UHR_vs_HBR.csv")
# Display the phenotype data
pheno_data
# Load the ballgown object from file
load('bg.rda')
# The load command, loads an R object from a file into memory in our R session.
# You can use ls() to view the names of variables that have been loaded
ls()
# Print a summary of the ballgown object
bg
# Open a PDF file where we will save some plots. We will save all figures and then view the PDF at the end
pdf(file=outfile)
# Extract FPKM values from the 'bg' object
fpkm = texpr(bg,meas="FPKM")
# View the last several rows of the FPKM table
tail(fpkm)
# Transform the FPKM values by adding 1 and convert to a log2 scale
fpkm = log2(fpkm+1)
# View the last several rows of the transformed FPKM table
tail(fpkm)
# Create boxplots to display summary statistics for the FPKM values for each sample
boxplot(fpkm,col=as.numeric(pheno_data$type)+1,las=2,ylab='log2(FPKM+1)')
# Display the transcript ID for a single row of data
ballgown::transcriptNames(bg)[2763]
# Display the gene name for a single row of data
ballgown::geneNames(bg)[2763]
# Create a BoxPlot comparing the expression of a single gene for all replicates of both conditions
plot(fpkm[2763,] ~ pheno_data$type, border=c(2,3), main=paste(ballgown::geneNames(bg)[2763],' : ', ballgown::transcriptNames(bg)[2763]),pch=19, xlab="Type", ylab='log2(FPKM+1)')
# Add the FPKM values for each sample onto the plot
points(fpkm[2763,] ~ jitter(as.numeric(pheno_data$type)), col=as.numeric(pheno_data$type)+1, pch=16)
# Create a plot of transcript structures observed in each replicate and color transcripts by expression level
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample HBR_Rep1'), sample=c('HBR_Rep1'))
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample HBR_Rep2'), sample=c('HBR_Rep2'))
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample HBR_Rep3'), sample=c('HBR_Rep3'))
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample UHR_Rep1'), sample=c('UHR_Rep1'))
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample UHR_Rep2'), sample=c('UHR_Rep2'))
plotTranscripts(ballgown::geneIDs(bg)[2763], bg, main=c('Gene in sample UHR_Rep3'), sample=c('UHR_Rep3'))
#plotMeans('TST',bg,groupvar="type",legend=FALSE)
# Close the PDF device where we have been saving our plots
dev.off()
# Exit the R session
quit(save="no")