Skip to content

haodong2000/key-indicator_prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Prediction of Key Performance Indicators of Industrial Processes Based on Deep Learning

© Haodong Li

  • Core packages
tensorflow 2.9.1
torch 1.12.0
  • Usage
$ python run.py --delay [number of time steps]
  • 115 dimensions & 29070 time steps
  • 6 key indicators & 109 auxiliary indicators
  • Due to relevant agreement, the data is kept confidential. Please contact Prof. Zhang via xinminzhang@zju.edu.cn if needed.
Hot metal Si (01) Hot metal S (53) Hot metal Mn (54)
001_╚▄πèSi 053_╚▄πèS 054_╚▄πèMn
fft_01 fft_53 fft_54
Hot metal P (55) Hot metal C (56) Hot metal Ti (57)
055_╚▄πèP 056_╚▄πèC╖╓╬÷éÄ 057_╚▄πèTi
fft_55 fft_56 fft_57
  • First row: data characteristics & correlation distribution among variables
    • The upper part of the graph is the distribution of the data, the yellow is the original data, and the red is the data after mean smoothing;
    • The lower half of the graph represents the distribution of correlation coefficients between this indicator and all 115 indicators.
  • Second row: frequency domain distribution of the data
  • Data pre-process: Max-Min Normalization & numpy.nan_to_num
Simple_LSTM ResNet_LSTM
simple_lstm_page-0001 resnet_rnn_page-0001
CNN_LSTM EfficientNetV2_LSTM: tf.keras.applications.EfficientNetV2S + LSTM
cnn_rnn_page-0001 efficientnetv2_rnn_new_page-0001
  • Overview
  • Detailed architecture
Encoder Decoder
transformer_encoder_NEW_page-0002 transformer_decoder_NEW_page-0002
  • Overview (CL means Continual Learning)
  • Detailed architecture
FastNet_1 FastNet_2 & SlowNet_2
CL_fastnet_1_page-0001 CL_2_page-0001
SlowNet_1 MLP_End
CL_slownet_1_page-0002 CL_3_page-0002
  • Results on 6 key indicators prediction (time_step = 0, only values on the next time step is predicted)
Model RMSE Loss R2 Score Accuracy
CNN_LSTM 0.047456759959459305±3.58e-3 0.9457983374595642±6.59e-3
CL-based Model 0.053124434375849953±8.71e-4 0.9473923005326821±2.04e-3
Transformer-based Model 0.05200807997651065±1.50e-3 0.9524179648107557±2.88e-3
EfficientNetV2_LSTM 0.043179091066122055±2.08e-3 0.9531577825546265±3.95e-3
ResNet_LSTM 0.04068516939878464±2.65e-4 0.9558192491531372±3.10e-4
Simple_LSTM 0.0395905040204525±1.43e-4 0.9569856524467468±1.75e-4
  • Accuracy results on 6 key indicators prediction in multi time steps (1~20)
R2 Score Accuracy 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CNN_LSTM 0.908867 0.886703 0.899269 0.892492 0.887989 0.891364 0.887657 0.890357 0.852183 0.878856 0.876410 0.882148 0.876686 0.867974 0.873978 0.860266 0.865002 0.864405 0.873603 0.872325
ResNet_LSTM 0.929079 0.913988 0.907212 0.900088 0.896830 0.889898 0.888573 0.887636 0.883562 0.879436 0.875042 0.879181 0.879674 0.873856 0.875850 0.876290 0.867004 0.870304 0.869956 0.871067
Transformer-based Model 0.924479 0.905764 0.890927 0.887882 0.879788 0.877154 0.867402 0.868933 0.862485 0.859569 0.853113 0.847314 0.847392 0.846858 0.846743 0.838788 0.840361 0.835966 0.836579 0.830244
EfficientNetV2_LSTM 0.926505 0.909907 0.865817 0.846057 0.893718 0.879946 0.888579 0.885395 0.888055 0.877716 0.880843 0.880393 0.868341 0.878926 0.862367 0.871897 0.871534 0.878088 0.874382 0.864462
Simple_LSTM 0.932606 0.917350 0.908768 0.904000 0.899892 0.896070 0.893260 0.891410 0.887690 0.883684 0.883256 0.881757 0.882073 0.878427 0.876781 0.877600 0.874004 0.872749 0.874959 0.871901
CL-based Model 0.926022 0.915719 0.914630 0.911664 0.907598 0.904705 0.905521 0.909347 0.908416 0.903857 0.905245 0.903743 0.903044 0.899642 0.898448 0.902504 0.903457 0.900310 0.897716 0.890362
  • Loss results on 6 key indicators prediction in multi time steps (1~20)
RMSE Loss 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
CNN_LSTM 0.062719 0.069669 0.065025 0.068296 0.070231 0.068054 0.069016 0.067706 0.081297 0.073171 0.073568 0.071251 0.073282 0.075785 0.072892 0.079644 0.078324 0.077303 0.074049 0.074703
ResNet_LSTM 0.052612 0.058794 0.061268 0.063988 0.065415 0.068184 0.068628 0.069234 0.070170 0.072334 0.073452 0.071944 0.072439 0.074497 0.073929 0.073369 0.076450 0.075966 0.075809 0.075544
Transformer-based Model 0.065352 0.073093 0.078722 0.079686 0.082578 0.083615 0.086860 0.086253 0.088425 0.089364 0.091480 0.093046 0.092977 0.093226 0.093441 0.095786 0.095165 0.096494 0.096241 0.098178
EfficientNetV2_LSTM 0.054545 0.059823 0.077574 0.084122 0.065652 0.072862 0.068345 0.068981 0.068923 0.071301 0.071452 0.072011 0.075173 0.071815 0.077215 0.074327 0.075223 0.071996 0.073958 0.077426
Simple_LSTM 0.050440 0.056559 0.060024 0.061961 0.063950 0.065591 0.066960 0.067253 0.068736 0.070218 0.070494 0.071119 0.070932 0.072555 0.073133 0.073189 0.074096 0.074467 0.073924 0.075296
CL-based Model 0.062023 0.064925 0.065745 0.066262 0.067535 0.068989 0.068911 0.067742 0.067886 0.069549 0.068565 0.069679 0.069927 0.069841 0.071422 0.070228 0.069699 0.070448 0.071425 0.073082
Accuracy trend Loss trend
mts_acc mts_loss
  • Results on 1 key indicators prediction (only Hot metal Si (01), time_step = 0)
  • EfficientNetV2_LSTM requires the number of selected key variables must be divisible by 3
Model RMSE Loss R2 Score Accuracy
CNN_LSTM 0.0405864343047142 0.8959161043167114
Simple_LSTM 0.039217736572027206 0.901961088180542
ResNet_LSTM 0.03927604481577873 0.9023586511611938
Baseline 0.03596 0.9334
CL-based Model 0.036562133335719144 0.9352364961074216
Transformer-based Model 0.009228735077959387 0.9901837524193436
  • Training log & prediction result visualization (take EfficientNetV2_LSTM with 6 key indicators scenario with time_step = 0 for example)
Hot metal Si (01) Hot metal S (53) Hot metal Mn (54)
simple_lstm_pred_1 simple_lstm_pred_2 simple_lstm_pred_3
Hot metal P (55) Hot metal C (56) Hot metal Ti (57)
simple_lstm_pred_4 simple_lstm_pred_5 simple_lstm_pred_6