© Haodong Li
- Configuration & Usage
- Data Analysis & Pre-process
- LSTM-based Model Design
- Transformer-based Model Design
- CL-based Model Design
- Experiments
- Core packages
tensorflow 2.9.1
torch 1.12.0
- Usage
$ python run.py --delay [number of time steps]
- 115 dimensions & 29070 time steps
- 6 key indicators & 109 auxiliary indicators
- Due to relevant agreement, the data is kept confidential. Please contact Prof. Zhang via xinminzhang@zju.edu.cn if needed.
Hot metal Si (01) | Hot metal S (53) | Hot metal Mn (54) |
---|---|---|
Hot metal P (55) | Hot metal C (56) | Hot metal Ti (57) |
---|---|---|
- First row: data characteristics & correlation distribution among variables
- The upper part of the graph is the distribution of the data, the yellow is the original data, and the red is the data after mean smoothing;
- The lower half of the graph represents the distribution of correlation coefficients between this indicator and all 115 indicators.
- Second row: frequency domain distribution of the data
- Data pre-process: Max-Min Normalization &
numpy.nan_to_num
Simple_LSTM |
ResNet_LSTM |
---|---|
CNN_LSTM |
EfficientNetV2_LSTM : tf.keras.applications.EfficientNetV2S + LSTM |
---|---|
- Overview
- Detailed architecture
Encoder | Decoder |
---|---|
- Overview (CL means Continual Learning)
- Detailed architecture
FastNet_1 |
FastNet_2 & SlowNet_2 |
---|---|
SlowNet_1 |
MLP_End |
---|---|
- Results on 6 key indicators prediction (
time_step
= 0, only values on the next time step is predicted)
Model | RMSE Loss |
R2 Score Accuracy |
---|---|---|
CNN_LSTM |
0.047456759959459305±3.58e-3 | 0.9457983374595642±6.59e-3 |
CL-based Model | 0.053124434375849953±8.71e-4 | 0.9473923005326821±2.04e-3 |
Transformer-based Model | 0.05200807997651065±1.50e-3 | 0.9524179648107557±2.88e-3 |
EfficientNetV2_LSTM |
0.043179091066122055±2.08e-3 | 0.9531577825546265±3.95e-3 |
ResNet_LSTM |
0.04068516939878464±2.65e-4 | 0.9558192491531372±3.10e-4 |
Simple_LSTM |
0.0395905040204525±1.43e-4 | 0.9569856524467468±1.75e-4 |
- Accuracy results on 6 key indicators prediction in multi time steps (1~20)
R2 Score Accuracy |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNN_LSTM |
0.908867 | 0.886703 | 0.899269 | 0.892492 | 0.887989 | 0.891364 | 0.887657 | 0.890357 | 0.852183 | 0.878856 | 0.876410 | 0.882148 | 0.876686 | 0.867974 | 0.873978 | 0.860266 | 0.865002 | 0.864405 | 0.873603 | 0.872325 |
ResNet_LSTM |
0.929079 | 0.913988 | 0.907212 | 0.900088 | 0.896830 | 0.889898 | 0.888573 | 0.887636 | 0.883562 | 0.879436 | 0.875042 | 0.879181 | 0.879674 | 0.873856 | 0.875850 | 0.876290 | 0.867004 | 0.870304 | 0.869956 | 0.871067 |
Transformer-based Model | 0.924479 | 0.905764 | 0.890927 | 0.887882 | 0.879788 | 0.877154 | 0.867402 | 0.868933 | 0.862485 | 0.859569 | 0.853113 | 0.847314 | 0.847392 | 0.846858 | 0.846743 | 0.838788 | 0.840361 | 0.835966 | 0.836579 | 0.830244 |
EfficientNetV2_LSTM |
0.926505 | 0.909907 | 0.865817 | 0.846057 | 0.893718 | 0.879946 | 0.888579 | 0.885395 | 0.888055 | 0.877716 | 0.880843 | 0.880393 | 0.868341 | 0.878926 | 0.862367 | 0.871897 | 0.871534 | 0.878088 | 0.874382 | 0.864462 |
Simple_LSTM |
0.932606 | 0.917350 | 0.908768 | 0.904000 | 0.899892 | 0.896070 | 0.893260 | 0.891410 | 0.887690 | 0.883684 | 0.883256 | 0.881757 | 0.882073 | 0.878427 | 0.876781 | 0.877600 | 0.874004 | 0.872749 | 0.874959 | 0.871901 |
CL-based Model | 0.926022 | 0.915719 | 0.914630 | 0.911664 | 0.907598 | 0.904705 | 0.905521 | 0.909347 | 0.908416 | 0.903857 | 0.905245 | 0.903743 | 0.903044 | 0.899642 | 0.898448 | 0.902504 | 0.903457 | 0.900310 | 0.897716 | 0.890362 |
- Loss results on 6 key indicators prediction in multi time steps (1~20)
RMSE Loss |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CNN_LSTM |
0.062719 | 0.069669 | 0.065025 | 0.068296 | 0.070231 | 0.068054 | 0.069016 | 0.067706 | 0.081297 | 0.073171 | 0.073568 | 0.071251 | 0.073282 | 0.075785 | 0.072892 | 0.079644 | 0.078324 | 0.077303 | 0.074049 | 0.074703 |
ResNet_LSTM |
0.052612 | 0.058794 | 0.061268 | 0.063988 | 0.065415 | 0.068184 | 0.068628 | 0.069234 | 0.070170 | 0.072334 | 0.073452 | 0.071944 | 0.072439 | 0.074497 | 0.073929 | 0.073369 | 0.076450 | 0.075966 | 0.075809 | 0.075544 |
Transformer-based Model | 0.065352 | 0.073093 | 0.078722 | 0.079686 | 0.082578 | 0.083615 | 0.086860 | 0.086253 | 0.088425 | 0.089364 | 0.091480 | 0.093046 | 0.092977 | 0.093226 | 0.093441 | 0.095786 | 0.095165 | 0.096494 | 0.096241 | 0.098178 |
EfficientNetV2_LSTM |
0.054545 | 0.059823 | 0.077574 | 0.084122 | 0.065652 | 0.072862 | 0.068345 | 0.068981 | 0.068923 | 0.071301 | 0.071452 | 0.072011 | 0.075173 | 0.071815 | 0.077215 | 0.074327 | 0.075223 | 0.071996 | 0.073958 | 0.077426 |
Simple_LSTM |
0.050440 | 0.056559 | 0.060024 | 0.061961 | 0.063950 | 0.065591 | 0.066960 | 0.067253 | 0.068736 | 0.070218 | 0.070494 | 0.071119 | 0.070932 | 0.072555 | 0.073133 | 0.073189 | 0.074096 | 0.074467 | 0.073924 | 0.075296 |
CL-based Model | 0.062023 | 0.064925 | 0.065745 | 0.066262 | 0.067535 | 0.068989 | 0.068911 | 0.067742 | 0.067886 | 0.069549 | 0.068565 | 0.069679 | 0.069927 | 0.069841 | 0.071422 | 0.070228 | 0.069699 | 0.070448 | 0.071425 | 0.073082 |
Accuracy trend | Loss trend |
---|---|
- Results on 1 key indicators prediction (only Hot metal Si (01),
time_step
= 0) EfficientNetV2_LSTM
requires the number of selected key variables must be divisible by 3
Model | RMSE Loss |
R2 Score Accuracy |
---|---|---|
CNN_LSTM |
0.0405864343047142 | 0.8959161043167114 |
Simple_LSTM |
0.039217736572027206 | 0.901961088180542 |
ResNet_LSTM |
0.03927604481577873 | 0.9023586511611938 |
Baseline | 0.03596 | 0.9334 |
CL-based Model | 0.036562133335719144 | 0.9352364961074216 |
Transformer-based Model | 0.009228735077959387 | 0.9901837524193436 |
- Training log & prediction result visualization (take
EfficientNetV2_LSTM
with 6 key indicators scenario withtime_step
= 0 for example)
Hot metal Si (01) | Hot metal S (53) | Hot metal Mn (54) |
---|---|---|
Hot metal P (55) | Hot metal C (56) | Hot metal Ti (57) |
---|---|---|