A fixture generator based on type annotations.
from dataclasses import dataclass
from datetime import datetime, date
from typing import List
from fistro.fistro import generate
@dataclass
class Employee:
id: int
birthday: date
last_access: datetime
password: str
number_plates: List[int]
name: str = 'Carlos Sánchez'
employee = generate(Employee)()
print(employee)
It will show something like this:
Employee(id=5809893100, birthday=datetime.date(559, 3, 6), last_access=datetime.datetime(1053, 8, 29, 19, 11, 14), password="iFZ>?)V0'", number_plates=[85863115, 3528889142, 2818728907, 6043092538, 4985672707], name='Carlos Sánchez')
generate
function can be called with to_json
or to_dict
boolean pararameters to return json or dict
representation respectively:
class AreaOfCompany(BaseModel):
enable: bool
riskOwner: str
description: str
name: str
code: str
print(fistro.generate(AreaOfCompany, as_dict=True))
>>> {'enable': True, 'riskOwner': 'LqPqS\x0c{kZ', 'description': 'k1917GvOV', 'name': '`;ORxzQ7i', 'code': 'w2 |P\rEps'}
print(fistro.generate(AreaOfCompany, as_json=True))
>>> {"enable": true, "riskOwner": "h@Ij34u?H", "description": ",R,G%0<y#", "name": "K4.\u000b:lK!}", "code": "fvitVYrk3"}
Another useful functions are generate_from_json
and get_class_body_from_annotations
:
from json import loads
from fistro.fistro import generate_from_json, get_class_body_from_annotations
specific_str = """{
"_id": "5ae09b3947467b00111e7bf6",
"localExposure": 0,
"answer": "mitigate",
"idRisk": "5ae09b3947467b00111e7bf6",
"version": 4,
"country": "BR",
"company": "0185",
"currency": "BRL",
"zone": "DIRT8",
"internalRef": "RSP-BR-0185-DIRT8-105",
"creationDate": "2017-12-13T23:00:00.000Z",
"title": "Tributário: Contribuições Previdenciárias sobre Plano de Stock Options",
"riskCategory": {
"es": "22. Contingencias tributarias",
"en": "22. Tax contingencies",
"pt": "22. Contingências Fiscais"
},
"evaluationType": "quantitative",
"basicRef": "26376309-2cc2-4a0d-9c6a-373e0a7d9043",
"localQUANTITATIVENetCASHFLOW": 0,
"euroQUANTITATIVENetCASHFLOW": 0,
"localQUANTITATIVEGrossCASHFLOW": 241000000,
"euroQUANTITATIVEGrossCASHFLOW": 57324742,
"probability": "veryPossible",
"status": "open",
"commissionApproval": false,
"companyRegistry": true,
"companyCode": "0185",
"IDNotification": "0aa0370e-e6d6-405c-a619-a47da0602dee",
"localQUANTITATIVEGrossOIBDA": 241000000,
"localQUANTITATIVEGrossCAPEX": 0,
"localQUANTITATIVENetOIBDA": 0,
"localQUANTITATIVENetCAPEX": 0,
"euroQUANTITATIVEGrossOIBDA": 57324742,
"euroQUANTITATIVEGrossCAPEX": 0,
"euroQUANTITATIVENetOIBDA": 0,
"euroQUANTITATIVENetCAPEX": 0,
"hierarchy": "principal",
"hierarchySubsidiaries": [],
"owner": "Vasco Gruber"
}"""
specific_json = loads(specific_str)
the_class = generate_from_json(specific_json)
print(get_class_body_from_annotations(the_class.__annotations__))
It will print:
_id: str
localExposure: int
answer: str
idRisk: str
version: int
country: str
company: str
currency: str
zone: str
internalRef: str
creationDate: str
title: str
riskCategory: typing.Dict[str, str]
evaluationType: str
basicRef: str
localQUANTITATIVENetCASHFLOW: int
euroQUANTITATIVENetCASHFLOW: int
localQUANTITATIVEGrossCASHFLOW: int
euroQUANTITATIVEGrossCASHFLOW: int
probability: str
status: str
commissionApproval: bool
companyRegistry: bool
companyCode: str
IDNotification: str
localQUANTITATIVEGrossOIBDA: int
localQUANTITATIVEGrossCAPEX: int
localQUANTITATIVENetOIBDA: int
localQUANTITATIVENetCAPEX: int
euroQUANTITATIVEGrossOIBDA: int
euroQUANTITATIVEGrossCAPEX: int
euroQUANTITATIVENetOIBDA: int
euroQUANTITATIVENetCAPEX: int
hierarchy: str
hierarchySubsidiaries: typing.List[typing.Any]
owner: str
pip install fistro
In memoriam of Chiquito de la Calzada.