Skip to content

hosseindehghanipour1998/Machine-Learning

Repository files navigation

License

Introduction to Jupyter Notebook

Build a Conda Environment

Our default base is where we have installed Anaconda.

  • Go to the directory you wish to create your environment using Terminal.
    • cd <YourPath>
    • conda create --prefix ./env <tools You need>
    • conda install <your tool>

As an Example :

$ cd /d G:\GitRepositories\NewEnvironment
$ conda create --prefix ./env pandas matplotlib numpy scikit-Learn
$ conda activate
$ conda install jupyter

How To Open Jupyter Notebook

  • Firstly you should build a Conda Environment
  • Open Terminal
  • cd to the directory that contains the built environment.
cd /d <path>
Ex : cd /d G:\GitRepository\Machine-Learning\

<<<<<<< HEAD

  • Activate Anaconda Environment simply by typing : $ conda activate [environmentName]
    • If you don't specifically name the [environmentName] name , it will automatically open the base environment. =======
  • Acitvate Anaconda Environment simply by typing : $ conda activate [environmentName]
    • If you don't specifictly name the [environmentName] name , it will automatically open the base environment.
    • You can see the existing environments by simply typing conda info --env

9709b90ad3bd01429af240a6e5528dee76060347

  • Open Jupyter Notebook : $ jupyter notebook

As an Example :

$ cd /d G:\GitRepository\Machine-Learning/
$ conda activate RegEnv
$ jupyter notebook

Summary

$ cd /d G:\GitRepositories\NewEnvironment
$ conda create --prefix ./env pandas matplotlib numpy scikit-Learn
$ conda activate
$ conda install jupyter
$ jupyter notebook

Jupyter Guide

Switch to Markdown
  • Press Esc
  • Press m on the keyboard
Switch to Code
  • Press Esc
  • Press y on the keyboard
Delete a Line
  • Press Esc
  • Press x on the keyboard
Run a Line
  • Shift + Enter
Guide of each function
  • Go to the paranthesis () of the function
  • push shift + tab to see the function's documentation
Auto Complete
  • Only Tab ... push multiple times to show the options.

License

This repository is released under Apache 2.0 License. To put it in a nutshell, This means that you can use the source codes in any opensource projects or contributions. Attribution is not mandatory but appreciated.

To remove all barriers in the way of science.

About

What you need to start learning Machine-Learning

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published