Skip to content

Commit

Permalink
style
Browse files Browse the repository at this point in the history
  • Loading branch information
lhoestq committed Oct 12, 2021
1 parent 3b80398 commit 6228e84
Showing 1 changed file with 0 additions and 1 deletion.
1 change: 0 additions & 1 deletion datasets/food101/food101.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,6 @@
"""Dataset class for Food-101 dataset."""

import datasets
from datasets.tasks import ImageClassification


_BASE_URL = "http://data.vision.ee.ethz.ch/cvl/food-101.tar.gz"
Expand Down

1 comment on commit 6228e84

@github-actions
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Show benchmarks

PyArrow==3.0.0

Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.010205 / 0.011353 (-0.001148) 0.004569 / 0.011008 (-0.006439) 0.038739 / 0.038508 (0.000231) 0.035755 / 0.023109 (0.012646) 0.361751 / 0.275898 (0.085853) 0.362801 / 0.323480 (0.039321) 0.018626 / 0.007986 (0.010640) 0.005913 / 0.004328 (0.001585) 0.010725 / 0.004250 (0.006474) 0.038863 / 0.037052 (0.001811) 0.366276 / 0.258489 (0.107787) 0.377394 / 0.293841 (0.083553) 0.035221 / 0.128546 (-0.093325) 0.010898 / 0.075646 (-0.064749) 0.304052 / 0.419271 (-0.115219) 0.054879 / 0.043533 (0.011346) 0.350884 / 0.255139 (0.095745) 0.364879 / 0.283200 (0.081679) 0.099582 / 0.141683 (-0.042101) 1.965636 / 1.452155 (0.513481) 2.142780 / 1.492716 (0.650064)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.234037 / 0.018006 (0.216031) 0.540019 / 0.000490 (0.539529) 0.004992 / 0.000200 (0.004792) 0.000089 / 0.000054 (0.000034)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.042017 / 0.037411 (0.004606) 0.026359 / 0.014526 (0.011833) 0.030442 / 0.176557 (-0.146115) 0.131596 / 0.737135 (-0.605539) 0.031224 / 0.296338 (-0.265115)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.480365 / 0.215209 (0.265156) 4.788863 / 2.077655 (2.711209) 2.283043 / 1.504120 (0.778923) 1.951305 / 1.541195 (0.410111) 1.990840 / 1.468490 (0.522350) 0.502774 / 4.584777 (-4.082003) 6.499008 / 3.745712 (2.753295) 1.434990 / 5.269862 (-3.834872) 1.360231 / 4.565676 (-3.205445) 0.059264 / 0.424275 (-0.365011) 0.005743 / 0.007607 (-0.001864) 0.615890 / 0.226044 (0.389846) 6.282797 / 2.268929 (4.013868) 3.139644 / 55.444624 (-52.304981) 2.338569 / 6.876477 (-4.537907) 2.241276 / 2.142072 (0.099204) 0.655907 / 4.805227 (-4.149320) 0.144882 / 6.500664 (-6.355782) 0.060689 / 0.075469 (-0.014780)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.081239 / 1.841788 (-0.760549) 14.242456 / 8.074308 (6.168148) 34.043052 / 10.191392 (23.851660) 0.913495 / 0.680424 (0.233071) 0.596333 / 0.534201 (0.062132) 0.264704 / 0.579283 (-0.314579) 0.744881 / 0.434364 (0.310518) 0.245156 / 0.540337 (-0.295182) 0.245076 / 1.386936 (-1.141860)
PyArrow==latest
Show updated benchmarks!

Benchmark: benchmark_array_xd.json

metric read_batch_formatted_as_numpy after write_array2d read_batch_formatted_as_numpy after write_flattened_sequence read_batch_formatted_as_numpy after write_nested_sequence read_batch_unformated after write_array2d read_batch_unformated after write_flattened_sequence read_batch_unformated after write_nested_sequence read_col_formatted_as_numpy after write_array2d read_col_formatted_as_numpy after write_flattened_sequence read_col_formatted_as_numpy after write_nested_sequence read_col_unformated after write_array2d read_col_unformated after write_flattened_sequence read_col_unformated after write_nested_sequence read_formatted_as_numpy after write_array2d read_formatted_as_numpy after write_flattened_sequence read_formatted_as_numpy after write_nested_sequence read_unformated after write_array2d read_unformated after write_flattened_sequence read_unformated after write_nested_sequence write_array2d write_flattened_sequence write_nested_sequence
new / old (diff) 0.010019 / 0.011353 (-0.001334) 0.004200 / 0.011008 (-0.006808) 0.041301 / 0.038508 (0.002793) 0.034930 / 0.023109 (0.011821) 0.353495 / 0.275898 (0.077597) 0.406446 / 0.323480 (0.082967) 0.007786 / 0.007986 (-0.000200) 0.005275 / 0.004328 (0.000947) 0.024045 / 0.004250 (0.019794) 0.040944 / 0.037052 (0.003892) 0.353076 / 0.258489 (0.094587) 0.406531 / 0.293841 (0.112690) 0.033214 / 0.128546 (-0.095332) 0.011788 / 0.075646 (-0.063858) 0.304890 / 0.419271 (-0.114382) 0.054389 / 0.043533 (0.010856) 0.353688 / 0.255139 (0.098549) 0.395128 / 0.283200 (0.111928) 0.083157 / 0.141683 (-0.058526) 1.976916 / 1.452155 (0.524762) 2.040125 / 1.492716 (0.547409)

Benchmark: benchmark_getitem_100B.json

metric get_batch_of_1024_random_rows get_batch_of_1024_rows get_first_row get_last_row
new / old (diff) 0.375232 / 0.018006 (0.357226) 0.548301 / 0.000490 (0.547811) 0.053394 / 0.000200 (0.053194) 0.000779 / 0.000054 (0.000725)

Benchmark: benchmark_indices_mapping.json

metric select shard shuffle sort train_test_split
new / old (diff) 0.038324 / 0.037411 (0.000913) 0.024745 / 0.014526 (0.010219) 0.029912 / 0.176557 (-0.146644) 0.129229 / 0.737135 (-0.607906) 0.031008 / 0.296338 (-0.265331)

Benchmark: benchmark_iterating.json

metric read 5000 read 50000 read_batch 50000 10 read_batch 50000 100 read_batch 50000 1000 read_formatted numpy 5000 read_formatted pandas 5000 read_formatted tensorflow 5000 read_formatted torch 5000 read_formatted_batch numpy 5000 10 read_formatted_batch numpy 5000 1000 shuffled read 5000 shuffled read 50000 shuffled read_batch 50000 10 shuffled read_batch 50000 100 shuffled read_batch 50000 1000 shuffled read_formatted numpy 5000 shuffled read_formatted_batch numpy 5000 10 shuffled read_formatted_batch numpy 5000 1000
new / old (diff) 0.480016 / 0.215209 (0.264807) 4.863347 / 2.077655 (2.785692) 2.203707 / 1.504120 (0.699587) 1.887461 / 1.541195 (0.346267) 1.892557 / 1.468490 (0.424067) 0.515157 / 4.584777 (-4.069620) 6.619318 / 3.745712 (2.873606) 1.445057 / 5.269862 (-3.824805) 1.358545 / 4.565676 (-3.207132) 0.061546 / 0.424275 (-0.362729) 0.005521 / 0.007607 (-0.002086) 0.649647 / 0.226044 (0.423603) 6.378761 / 2.268929 (4.109833) 2.899045 / 55.444624 (-52.545580) 2.194064 / 6.876477 (-4.682413) 2.132955 / 2.142072 (-0.009118) 0.672235 / 4.805227 (-4.132992) 0.147203 / 6.500664 (-6.353461) 0.062448 / 0.075469 (-0.013021)

Benchmark: benchmark_map_filter.json

metric filter map fast-tokenizer batched map identity map identity batched map no-op batched map no-op batched numpy map no-op batched pandas map no-op batched pytorch map no-op batched tensorflow
new / old (diff) 1.048711 / 1.841788 (-0.793076) 13.952198 / 8.074308 (5.877890) 32.526008 / 10.191392 (22.334616) 0.800956 / 0.680424 (0.120532) 0.582411 / 0.534201 (0.048210) 0.268577 / 0.579283 (-0.310706) 0.703709 / 0.434364 (0.269345) 0.231667 / 0.540337 (-0.308671) 0.242720 / 1.386936 (-1.144216)

CML watermark

Please sign in to comment.