33
33
load_image ,
34
34
load_numpy ,
35
35
nightly ,
36
+ numpy_cosine_similarity_distance ,
36
37
require_torch_gpu ,
37
38
)
38
39
39
- from ..test_pipelines_common import PipelineTesterMixin , assert_mean_pixel_difference
40
+ from ..test_pipelines_common import PipelineTesterMixin
40
41
41
42
42
43
enable_full_determinism ()
@@ -260,20 +261,20 @@ def test_kandinsky_controlnet(self):
260
261
pipeline = KandinskyV22ControlnetPipeline .from_pretrained (
261
262
"kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype = torch .float16
262
263
)
263
- pipeline = pipeline .enable_model_cpu_offload ()
264
+ pipeline .enable_model_cpu_offload ()
264
265
pipeline .set_progress_bar_config (disable = None )
265
266
266
267
prompt = "A robot, 4k photo"
267
268
268
- generator = torch .Generator (device = "cuda " ).manual_seed (0 )
269
+ generator = torch .Generator (device = "cpu " ).manual_seed (0 )
269
270
image_emb , zero_image_emb = pipe_prior (
270
271
prompt ,
271
272
generator = generator ,
272
273
num_inference_steps = 2 ,
273
274
negative_prompt = "" ,
274
275
).to_tuple ()
275
276
276
- generator = torch .Generator (device = "cuda " ).manual_seed (0 )
277
+ generator = torch .Generator (device = "cpu " ).manual_seed (0 )
277
278
output = pipeline (
278
279
image_embeds = image_emb ,
279
280
negative_image_embeds = zero_image_emb ,
@@ -287,4 +288,5 @@ def test_kandinsky_controlnet(self):
287
288
288
289
assert image .shape == (512 , 512 , 3 )
289
290
290
- assert_mean_pixel_difference (image , expected_image )
291
+ max_diff = numpy_cosine_similarity_distance (expected_image .flatten (), image .flatten ())
292
+ assert max_diff < 1e-4
0 commit comments