-
Notifications
You must be signed in to change notification settings - Fork 27k
/
modeling_dbrx.py
1514 lines (1279 loc) · 67.7 KB
/
modeling_dbrx.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch DBRX model. """
import math
from typing import Any, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from .configuration_dbrx import DbrxConfig
if is_flash_attn_2_available():
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "DbrxConfig"
# Copied from transformers.models.gemma.modeling_gemma.GemmaRotaryEmbedding with Gemma->Dbrx
class DbrxRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
super().__init__()
self.dim = dim
self.max_position_embeddings = max_position_embeddings
self.base = base
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float() / self.dim))
self.register_buffer("inv_freq", tensor=inv_freq, persistent=False)
@torch.no_grad()
def forward(self, x, position_ids, seq_len=None):
# x: [bs, num_attention_heads, seq_len, head_size]
self.inv_freq.to(x.device)
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 since bfloat16 loses precision on long contexts
# See https://github.com/huggingface/transformers/pull/29285
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def load_balancing_loss_func(
gate_logits: torch.Tensor,
num_experts: int,
top_k: int,
attention_mask: Optional[torch.Tensor],
) -> torch.Tensor:
r"""Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts (`int`):
Number of experts.
top_k (`int`):
The number of experts each token is routed to.
attention_mask (`torch.Tensor`, None):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return torch.tensor(0.0)
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
def _get_unpad_data(attention_mask):
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
max_seqlen_in_batch = seqlens_in_batch.max().item()
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
return (
indices,
cu_seqlens,
max_seqlen_in_batch,
)
class DbrxAttention(nn.Module):
"""Multi-head self attention."""
def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None):
super().__init__()
self.config = config
self.hidden_size = config.d_model
self.num_heads = config.n_heads
self.head_dim = self.hidden_size // self.num_heads
self.max_position_embeddings = config.max_seq_len
self.block_idx = block_idx
if block_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `block_idx` is not recommended and will "
+ "lead to errors during the forward call if caching is used. Please make sure to provide a `block_idx` "
+ "when creating this class."
)
attn_config = config.attn_config
self.attn_pdrop = attn_config.attn_pdrop
self.clip_qkv = attn_config.clip_qkv
self.num_key_value_heads = attn_config.kv_n_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.rope_theta = attn_config.rope_theta
self.is_causal = True
self.Wqkv = nn.Linear(
self.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim, bias=False
)
self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.rotary_emb = DbrxRotaryEmbedding(
self.head_dim,
max_position_embeddings=self.max_position_embeddings,
base=self.rope_theta,
)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
bsz, q_len, _ = hidden_states.size()
qkv_states = self.Wqkv(hidden_states)
min_val = -self.clip_qkv if self.clip_qkv is not None else None
max_val = self.clip_qkv
qkv_states = qkv_states.clamp(min=min_val, max=max_val)
query_states, key_states, value_states = qkv_states.split(
[
self.hidden_size,
self.num_key_value_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
],
dim=2,
)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; position_ids needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.attn_pdrop, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
+ f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class DbrxFlashAttention2(DbrxAttention):
"""Dbrx flash attention module.
This module inherits from `DbrxAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it
calls the public API of flash attention.
"""
def __init__(self, *args: Any, **kwargs: Any):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
# From: https://github.com/huggingface/transformers/blob/3b8e2932ce743008f63585aae1e1b8b30dc8b3ac/src/transformers/models/gemma/modeling_gemma.py#L318
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if isinstance(past_key_value, StaticCache):
raise ValueError(
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
)
logger.info("Implicitly setting `output_attentions` to False as it is not supported in Flash Attention.")
output_attentions = False
bsz, q_len, _ = hidden_states.size()
qkv_states = self.Wqkv(hidden_states)
if self.clip_qkv is not None:
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
query_states, key_states, value_states = qkv_states.split(
[
self.hidden_size,
self.num_key_value_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
],
dim=2,
)
# Flash attention requires the input to have the shape
# batch_size x seq_length x head_dim x hidden_dim
# therefore we just need to keep the original shape
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
dropout_rate = self.attn_pdrop if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = query_states.dtype
logger.warning_once(
"The input hidden states seems to be silently casted in float32, this might be "
+ "related to the fact you have upcasted embedding or layer norm layers in "
+ f"float32. We will cast back the input in {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = self._flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=dropout_rate,
)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
def _flash_attention_forward(
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
):
"""
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
first unpad the input, then computes the attention scores and pad the final attention scores.
Args:
query_states (`torch.Tensor`):
Input query states to be passed to Flash Attention API
key_states (`torch.Tensor`):
Input key states to be passed to Flash Attention API
value_states (`torch.Tensor`):
Input value states to be passed to Flash Attention API
attention_mask (`torch.Tensor`):
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
position of padding tokens and 1 for the position of non-padding tokens.
dropout (`float`):
Attention dropout
softmax_scale (`float`, *optional*):
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
"""
if not self._flash_attn_uses_top_left_mask:
causal = self.is_causal
else:
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
causal = self.is_causal and query_length != 1
# Contains at least one padding token in the sequence
if attention_mask is not None:
batch_size = query_states.shape[0]
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
query_states, key_states, value_states, attention_mask, query_length
)
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
attn_output_unpad = flash_attn_varlen_func(
query_states,
key_states,
value_states,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_k=cu_seqlens_k,
max_seqlen_q=max_seqlen_in_batch_q,
max_seqlen_k=max_seqlen_in_batch_k,
dropout_p=dropout,
softmax_scale=softmax_scale,
causal=causal,
)
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
else:
attn_output = flash_attn_func(
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
)
return attn_output
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
key_layer = index_first_axis(
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
value_layer = index_first_axis(
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
)
if query_length == kv_seq_len:
query_layer = index_first_axis(
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
)
cu_seqlens_q = cu_seqlens_k
max_seqlen_in_batch_q = max_seqlen_in_batch_k
indices_q = indices_k
elif query_length == 1:
max_seqlen_in_batch_q = 1
cu_seqlens_q = torch.arange(
batch_size + 1, dtype=torch.int32, device=query_layer.device
) # There is a memcpy here, that is very bad.
indices_q = cu_seqlens_q[:-1]
query_layer = query_layer.squeeze(1)
else:
# The -q_len: slice assumes left padding.
attention_mask = attention_mask[:, -query_length:]
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
return (
query_layer,
key_layer,
value_layer,
indices_q,
(cu_seqlens_q, cu_seqlens_k),
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
)
class DbrxSdpaAttention(DbrxAttention):
"""
Dbrx attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`DbrxAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"DbrxModel is using DbrxSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
bsz, q_len, _ = hidden_states.size()
qkv_states = self.Wqkv(hidden_states)
if self.clip_qkv is not None:
qkv_states = qkv_states.clamp(min=-self.clip_qkv, max=self.clip_qkv)
query_states, key_states, value_states = qkv_states.split(
[
self.hidden_size,
self.num_key_value_heads * self.head_dim,
self.num_key_value_heads * self.head_dim,
],
dim=2,
)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = self.rotary_emb(value_states, position_ids, seq_len=None)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, None)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.block_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.attn_pdrop if self.training else 0.0,
is_causal=causal_mask is None and q_len > 1,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
DBRX_ATTENTION_CLASSES = {
"eager": DbrxAttention,
"flash_attention_2": DbrxFlashAttention2,
"sdpa": DbrxSdpaAttention,
}
class DbrxNormAttentionNorm(nn.Module):
def __init__(self, config: DbrxConfig, block_idx: Optional[int] = None):
super().__init__()
self.block_idx = block_idx
self.resid_pdrop = config.resid_pdrop
self.norm_1 = nn.LayerNorm(config.d_model, bias=False)
self.attn = DBRX_ATTENTION_CLASSES[config._attn_implementation](
config=config,
block_idx=block_idx,
)
self.norm_2 = nn.LayerNorm(config.d_model, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
position_ids: torch.LongTensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: bool = False,
use_cache: bool = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
residual_states = hidden_states
hidden_states = self.norm_1(hidden_states).to(hidden_states.dtype)
hidden_states, attn_weights, past_key_value = self.attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training)
hidden_states = hidden_states + residual_states
residual_states = hidden_states
hidden_states = self.norm_2(hidden_states).to(hidden_states.dtype)
return residual_states, hidden_states, attn_weights, past_key_value
class DbrxRouter(nn.Module):
def __init__(
self,
hidden_size: int,
moe_num_experts: int,
moe_top_k: int,
moe_jitter_eps: Optional[float],
moe_normalize_expert_weights: Optional[float],
):
super().__init__()
self.hidden_size = hidden_size
self.moe_num_experts = moe_num_experts
self.moe_top_k = moe_top_k
self.moe_jitter_eps = moe_jitter_eps
self.moe_normalize_expert_weights = moe_normalize_expert_weights
self.layer = nn.Linear(self.hidden_size, self.moe_num_experts, bias=False)
def forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.LongTensor]:
if self.training and self.moe_jitter_eps is not None:
hidden_states *= torch.empty_like(hidden_states).uniform_(
1.0 - self.moe_jitter_eps, 1.0 + self.moe_jitter_eps
)
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
weights = self.layer(hidden_states).softmax(dim=-1, dtype=torch.float32)
top_weights, top_experts = torch.topk(weights, self.moe_top_k, dim=-1)
top_weights_scale = (
torch.norm(top_weights, p=self.moe_normalize_expert_weights, dim=-1, keepdim=True)
if self.moe_normalize_expert_weights is not None
else 1.0
)
top_weights = top_weights / top_weights_scale
weights = weights.to(hidden_states.dtype)
top_weights = top_weights.to(hidden_states.dtype)
return weights, top_weights, top_experts
class DbrxExpertGLU(nn.Module):
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict):
super().__init__()
self.hidden_size = hidden_size
self.ffn_hidden_size = ffn_hidden_size
self.moe_num_experts = moe_num_experts
self.w1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
self.v1 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
self.w2 = nn.Parameter(torch.empty(moe_num_experts * ffn_hidden_size, hidden_size))
act_fn_name = ffn_act_fn.get("name", "silu")
self.activation_fn = ACT2FN[act_fn_name]
def forward(
self, x: torch.Tensor, expert_w1: torch.Tensor, expert_v1: torch.Tensor, expert_w2: torch.Tensor
) -> torch.Tensor:
gate_proj = x.matmul(expert_w1.t())
up_proj = x.matmul(expert_v1.t())
gate_proj = self.activation_fn(gate_proj)
intermediate_states = gate_proj * up_proj
down_proj = intermediate_states.matmul(expert_w2)
return down_proj
class DbrxExperts(nn.Module):
def __init__(self, hidden_size: int, ffn_hidden_size: int, moe_num_experts: int, ffn_act_fn: dict):
super().__init__()
self.moe_num_experts = moe_num_experts
self.mlp = DbrxExpertGLU(
hidden_size=hidden_size,
ffn_hidden_size=ffn_hidden_size,
moe_num_experts=moe_num_experts,
ffn_act_fn=ffn_act_fn,
)
def forward(
self, x: torch.Tensor, weights: torch.Tensor, top_weights: torch.Tensor, top_experts: torch.LongTensor
) -> torch.Tensor:
bsz, q_len, hidden_size = x.shape
x = x.view(-1, hidden_size)
out = torch.zeros_like(x)
expert_mask = nn.functional.one_hot(top_experts, num_classes=self.moe_num_experts).permute(2, 1, 0)
# Chunk experts at once to avoid storing full parameter multiple times in autograd
w1_chunked = self.mlp.w1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
self.moe_num_experts, dim=0
)
v1_chunked = self.mlp.v1.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
self.moe_num_experts, dim=0
)
w2_chunked = self.mlp.w2.view(self.mlp.moe_num_experts, self.mlp.ffn_hidden_size, self.mlp.hidden_size).chunk(
self.moe_num_experts, dim=0
)
w1_chunked = [w1.squeeze(dim=0) for w1 in w1_chunked]
v1_chunked = [v1.squeeze(dim=0) for v1 in v1_chunked]
w2_chunked = [w2.squeeze(dim=0) for w2 in w2_chunked]
for expert_idx in range(0, self.moe_num_experts):
topk_idx, token_idx = torch.where(expert_mask[expert_idx])
if token_idx.shape[0] == 0:
continue
token_list = token_idx
topk_list = topk_idx
expert_tokens = x[None, token_list].reshape(-1, hidden_size)
expert_out = (
self.mlp(expert_tokens, w1_chunked[expert_idx], v1_chunked[expert_idx], w2_chunked[expert_idx])
* top_weights[token_list, topk_list, None]
)
out.index_add_(0, token_idx, expert_out)
out = out.reshape(bsz, q_len, hidden_size)
return out
class DbrxFFN(nn.Module):
def __init__(self, config: DbrxConfig):
super().__init__()
ffn_config = config.ffn_config
self.router = DbrxRouter(
hidden_size=config.d_model,
moe_num_experts=ffn_config.moe_num_experts,
moe_top_k=ffn_config.moe_top_k,
moe_jitter_eps=ffn_config.moe_jitter_eps,
moe_normalize_expert_weights=ffn_config.moe_normalize_expert_weights,
)
self.experts = DbrxExperts(
hidden_size=config.d_model,
ffn_hidden_size=ffn_config.ffn_hidden_size,
moe_num_experts=ffn_config.moe_num_experts,
ffn_act_fn=ffn_config.ffn_act_fn,
)
def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
weights, top_weights, top_experts = self.router(x)
out = self.experts(x, weights, top_weights, top_experts)
return out, weights
class DbrxBlock(nn.Module):
def __init__(self, config: DbrxConfig, block_idx: int):
super().__init__()
self.hidden_size = config.d_model
self.resid_pdrop = config.resid_pdrop
self.block_idx = block_idx
self.norm_attn_norm = DbrxNormAttentionNorm(
config=config,
block_idx=block_idx,
)
self.ffn = DbrxFFN(config=config)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: torch.LongTensor = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
output_router_logits: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Any,
) -> Union[
Tuple[torch.Tensor],
Tuple[torch.Tensor, Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[Cache]],
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]],
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[Cache], Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache], Optional[torch.Tensor]],
]:
"""Forward function for DbrxBlock.
Args:
hidden_states (`torch.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
position_ids (`torch.LongTensor`): position ids of shape `(batch, seq_len)`
attention_mask (`torch.Tensor`, optional): attention mask of size (batch_size, sequence_length)
if flash attention is used or (batch_size, 1, query_sequence_length, key_sequence_length)
if default attention is used.
past_key_value (`Tuple(torch.Tensor)`, optional): cached past key and value projection states
output_attentions (`bool`, optional): Whether or not to return the attentions tensors of all
attention layers. See `attentions` under returned tensors for more detail.
output_router_logits (`bool`, optional): Whether or not to return the router logits.
use_cache (`bool`, optional): If set to `True`, `past_key_values` key value states are
returned and can be used to speed up decoding (see `past_key_values`).
cache_position (`torch.LongTensor`, optional): position ids of the cache
"""
# Norm + Attention + Norm
resid_states, hidden_states, self_attn_weights, present_key_value = self.norm_attn_norm(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
# Fully Connected
hidden_states, router_logits = self.ffn(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.resid_pdrop, training=self.training)
hidden_states = resid_states + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
if output_router_logits:
outputs += (router_logits,)
return outputs
DBRX_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`DbrxConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare DBRX Model outputting raw hidden-states without any specific head on top.",
DBRX_START_DOCSTRING,
)
class DbrxPreTrainedModel(PreTrainedModel):
config_class = DbrxConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["DbrxBlock"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = True
def _init_weights(self, module: nn.Module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, DbrxExpertGLU):
module.w1.data.normal_(mean=0.0, std=std)
module.v1.data.normal_(mean=0.0, std=std)
module.w2.data.normal_(mean=0.0, std=std)
DBRX_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.