Skip to content

Implementation of "Adaptive Graph Auto-Encoder for General Data Clustering", IEEE Transactions on Pattern Analysis and Machine Intelligence.

Notifications You must be signed in to change notification settings

hyzhang98/AdaGAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive Graph Auto-Encoder for General Data Clustering visitors

This repository is our implementation of

Xuelong Li, Hongyuan Zhang, and Rui Zhang, "Adaptive Graph Auto-Encoder for General Data Clustering," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 9725-9732, 2022.

The core idea of AdaGAE is to use GNN to improve graph-based clustering methods on the general data. The performance bottleneck is the collapse caused by the simple update of constructed graph, which is formally proved in the paper and shown in the following figure. The first line is the illustration of UMIST and the second line is the one of USPS. Clearly, similar points are aggregated properly.

illustration

Remark: The general data is defined as the data point only represented by an d-dimension vector. Unlike vision-data and text-data, the general data does not require the order of features. It also needs no prior relations of features or samples/nodes (i.e., links), like graph data. Overall, we attempt to design models that can be applied to various types of data. We also try to accelerate GNN-based models on non-graph data and extend the theoretical analysis to large-scale datasets, which is released at https://github.com/hyzhang98/AnchorGAE-torch.

If you have issues, please email:

hyzhang98@gmail.com or hyzhang98@mail.nwpu.edu.cn.

How to Run AdaGAE

python run.py

Requirements

pytorch 1.3.1

scipy 1.3.1

scikit-learn 0.21.3

numpy 1.16.5

Citation

@article{AdaGAE,
  author={Li, Xuelong and Zhang, Hongyuan and Zhang, Rui},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={Adaptive Graph Auto-Encoder for General Data Clustering}, 
  year={2022},
  volume={44},
  number={12},
  pages={9725--9732},
  doi={10.1109/TPAMI.2021.3125687}
}

About

Implementation of "Adaptive Graph Auto-Encoder for General Data Clustering", IEEE Transactions on Pattern Analysis and Machine Intelligence.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages