This repository is our implementation of
AnchorGAE attempts to accelarate the unsupervised GNN (e.g., AdaGAE), which could be used to promote the clustering performance, via the classical trick of anchors / landmarks. It leads to a Siamese architecture and a specific graph convolution operation.
It should be emphasized that AnchorGAE is designed for the clustering on non-graph data, where all data points are only represented by
If you have issues, please email:
hyzhang98@gmail.com or henusjk@163.com.
To run the experiment, the name of dataset and parameters need be required. The required configuration is explained at the end.
There are six datasets are provided.
Parameter: {datasetName}
--datasetName=usps_all
--datasetName=segment_uni
--datasetName=mnist_all
--datasetName=Isolet
--datasetName=fashionMNIST_full
--datasetName=mnist_test
There are three hyperparameters that need to be set.
Parameter1: {AnchorNum, type:int, help='Initialize the number of anchors.'}
Parameter2: {k0, type:int, Initialize the k-sparsity.}
Parameter3: {increase_k, type:int, help='Initialize the size of the self-increasing sparsity.'}
There is an example running on USPS dataset.
python Main.py --datasetName=usps_all --AnchorNum=400 --increase_k=6 --k0=3
- pytorch 1.3.1
- torchvision 0.4.2
- munkres 1.0.12
- scipy 1.3.1
- scikit-learn 0.21.3
- numpy 1.16.5
@article{AnchorGAE,
author={Zhang, Hongyuan and Shi, Jiankun and Zhang, Rui and Li, Xuelong},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={Non-Graph Data Clustering via O(n) Bipartite Graph Convolution},
year={2022},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2022.3231470}
}