A time complexity analysis library written in Python. Supports multiple variables and arbitrary time complexity functions.
import theta
import random
# Here is a test function that finds the sum of two lists.
def test_function(x: list[int], y: list[int]):
lsum = 0
for a in x:
for b in y:
lsum += a+b
return lsum
# If we have N be the length of x and M be the length of y
N = theta.InputSizeVariable("n")
M = theta.InputSizeVariable("m")
# We can intuitively see that test_function is O(n*m).
# Create a sample data generator with various lengths of x,y and thus various values of N,M.
input_generator = (
theta.FunctionInput(
args=[[random.randint(0, 10) for _ in range(i1)], [random.randint(0, 10) for _ in range(i2)]],
input_sizes={
N: i1,
M: i2
}
)
for i1 in [5, 10, 20, 40, 80, 160, 320, 640]
for i2 in [5, 10, 20, 40, 80, 160, 320, 640]
)
# Benchmark our data
data = theta.compile_runtime_data(
f=test_function,
function_inputs=input_generator,
min_iters=200,
)
# Print correlation values (higher == more correlated).
print("O(n) ", theta.bigO_correlation(data, N)) # You can construct functions with N and M
# like you would like any other variable
print("O(m) ", theta.bigO_correlation(data, M))
print("O(nm) ", theta.bigO_correlation(data, N*M))
print("O(nlogm) ", theta.bigO_correlation(data, N*theta.Log(M)))
# Alternatively, let Theta guess an time complexity function from a predefined list of common
# functions
guess = theta.guess_time_complexity_two_vars(N, M, data)
print("Best guess: {} (correlation={})".format(guess[0], guess[1]))
O(n) 12.289116852356175
O(m) 12.285565621119934
O(nm) 21.331979668626328
O(nlogm) 12.91796806188527
Best guess: O(n*m) (correlation=21.331979668626328)
Notice here that O(nm)
has by far the highest correlation value.