-
Notifications
You must be signed in to change notification settings - Fork 0
ekh_development_scripting_examples_p03
Welcome to the Scripting Examples section! This page provides practical examples of scripts commonly used in IT security. These examples cover various tasks such as automation, monitoring, data analysis, and incident response. Each script is designed to demonstrate best practices and can be customized to fit your specific needs.
Scripting is a powerful tool in IT security, enabling automation, customization, and efficiency. By studying and utilizing these scripting examples, you can streamline your security operations, automate repetitive tasks, and enhance your overall security posture. These examples serve as a foundation for developing more complex scripts tailored to your environment.
- Automation: Save time and reduce errors by automating repetitive security tasks.
- Customization: Adapt scripts to meet specific security needs or to address unique challenges in your environment.
- Learning: Improve your scripting skills by exploring and modifying real-world examples.
- Efficiency: Increase operational efficiency by implementing effective, ready-to-use scripts.
Description: This Python script analyzes log files to identify and report unusual activity, such as multiple failed login attempts or unauthorized access.
Usage:
- Run this script on a Unix-based system to scan authentication logs for suspicious activity.
- Customize the
pattern
to search for specific events in your logs.
Description: This Bash script automates the process of backing up a directory to a remote server using rsync
.
Usage:
- Schedule this script using
cron
to perform regular backups. - Modify
SOURCE_DIR
,DEST_DIR
,REMOTE_SERVER
, andREMOTE_USER
to match your environment.
Description: This PowerShell script generates a report of all Active Directory users, including their last logon time and account status.
Get-ADUser -Filter * -Property DisplayName, LastLogonDate, Enabled |
Select-Object DisplayName, LastLogonDate, Enabled |
Export-Csv -Path "C:\Reports\ADUserReport.csv" -NoTypeInformation
Write-Host "Active Directory user report generated successfully!"
Usage:
- Run this script on a Windows server with the Active Directory PowerShell module installed.
- The report will be saved as
ADUserReport.csv
in the specified directory.
Description: This Python script performs a simple port scan on a given IP address to check for open ports.
Usage:
- Modify
target_ip
to the IP address you want to scan. - Adjust the
ports
range to scan different port ranges.
Description: This Bash script checks disk usage and sends an alert if usage exceeds a specified threshold.
Usage:
- Set
THRESHOLD
to the percentage of disk usage that should trigger an alert. - Adjust
PARTITION
to the disk partition you want to monitor.
- Before deploying scripts in a live environment, test them in a sandbox or controlled setting to ensure they work as expected and do not cause unintended side effects.
- Ensure that your scripts generate logs that can be reviewed for troubleshooting, auditing, or understanding script behavior.
- Never hard-code sensitive data such as passwords or API keys in your scripts. Use secure storage mechanisms like environment variables or vaults.
- Store your scripts in a version control system like Git to track changes, manage versions, and collaborate with others.
- Regularly review and update your scripts to fix bugs, improve efficiency, and adapt to changes in your environment or requirements.
To effectively integrate and utilize scripts within your IT security operations, automating tasks, enhancing monitoring, and improving overall efficiency.
- Identify Automation Opportunities: Look for repetitive or time-consuming tasks that could be automated with scripts.
- Customize Examples: Use the provided examples as a starting point, customizing them to meet your specific needs.
- Deploy Securely: Implement scripts in a secure manner, ensuring they run with appropriate privileges and are protected from unauthorized access.
- Monitor and Maintain: Continuously monitor the execution of scripts and update them as needed to ensure they remain effective and secure.
- Books: "Python for Cybersecurity: Using Python for Cyber Offense and Defense" by Howard E. Poston and "Bash Cookbook: Solutions and Examples for Bash Users" by Carl Albing offer great insights into scripting for security.
- Online Courses: Consider courses on scripting for security professionals on platforms like Coursera, Pluralsight, or Udemy.
- Certifications: Explore certifications like GPYC (GIAC Python Coder) to validate your scripting expertise in the security field.
🔗 Quick Links:
💡 Pro Tip: Bookmark this page to quickly access scripting examples that help you automate, monitor, and secure your IT environment effectively!
Automate confidently, secure efficiently! 💻
Ansvarsfraskrivelse:
Innholdet på denne wikisiden er generert helt eller delvis av kunstig intelligens (AI) og er ikke ment for informasjonsformål. Forfatteren fraskriver seg ethvert ansvar for nøyaktigheten, fullstendigheten eller påliteligheten av innholdet. Enhver handling du tar basert på informasjonen på denne siden er på eget ansvar og risiko.
Forfatteren fraskriver seg også ethvert ansvar for eventuelle likheter eller antydninger til likhet med annet publisert materiale. Enhver slik likhet er utilsiktet og uten ansvar. Det er leserens ansvar å gjennomføre plagiatkontroll og sikre at all bruk av innholdet fra denne siden er i samsvar med gjeldende regler og retningslinjer for opphavsrett og plagiering.
Det gis ingen garantier for at informasjonen på denne siden er i samsvar med gjeldende lover, regler eller retningslinjer. Leseren er selv ansvarlig for å verifisere nøyaktigheten og relevansen av informasjonen, og for å sikre korrekt kreditering av originale kilder.
Bruk av informasjonen på denne siden, inkludert risiko for plagiat eller brudd på opphavsrett, er på egen risiko.
Disklaimer 2
Alt innhold på denne plattformen er et resultat av en kreativ prosess som involverer både menneskelig input og generativ kunstig intelligens (AI). Tekstene er basert på bearbeidede prompts, og representerer en sammenslåing av publisistens tanker, ideer og AI-ens evne til å generere tekst.
Eventuelle likheter i rekkefølge, struktur, innhold, emnevalg, tematikk, avgrensninger eller oppstilling med annet materiale, enten kreditert eller ikke kreditert, publisert eller upublisert, er utilsiktet og tilfeldig.
Innholdet på denne plattformen er ikke ment å være en kilde til informasjon eller fakta, og skal ikke brukes som sådan. Dette er et eksperiment for å utforske potensialet og begrensningene ved generativ AI, både positive og negative, fordelaktige og ufordelaktige.
Vi oppfordrer leserne til å være kritiske og vurdere informasjonen i lys av dette. Vi tar ikke ansvar for eventuelle feil, unøyaktigheter eller misforståelser som kan oppstå som følge av bruk av innholdet på denne plattformen.
Disclaimer:
The information on this wiki page is generated entirely or partially by artificial intelligence (AI) and is not intended for informational purposes. The author disclaims any responsibility for the accuracy, completeness, or reliability of the content. Any action you take based on the information on this page is at your own responsibility and risk.
The author also disclaims any liability for any similarities or suggestions of similarity to other published material. Any such resemblance is unintentional and without liability. It is the reader's responsibility to conduct plagiarism checks and ensure that any use of the content from this page complies with applicable copyright and plagiarism rules and guidelines.
No guarantees are provided that the information on this page complies with applicable laws, rules, or guidelines. The reader is responsible for verifying the accuracy and relevance of the information and for ensuring proper crediting of original sources.
Use of the information on this page, including the risk of plagiarism or copyright infringement, is at your own risk.