This C ANSI source code is related to the article
[1] "Anatomy of the SIFT Method."
I. Rey Otero and M. Delbracio
Image Processing Online, 2013.
http://dx.doi.org/10.5201/ipol.2014.82
An online demo facility can be found at http://dx.doi.org/10.5201/ipol.2014.82
The SIFT method is patented
[2] "Method and apparatus for identifying scale invariant features in an image."
David G. Lowe
Patent number: 6711293
Filing date: Mar 6, 2000
Issue date: Mar 23, 2004
Application number: 09/519,89
These source codes are made available for the exclusive aim of serving as scientific tool to verify the soundness and completeness of the algorithm description. Compilation, execution and redistribution of this file may violate patents rights in certain countries. The situation being different for every country and changing over time, it is your responsibility to determine which patent rights restrictions apply to you before you compile, use, modify, or redistribute this file. A patent lawyer is qualified to make this determination. If and only if they don't conflict with any patent terms, you can benefit from the following license terms attached to this file.
This program is free software: you can use, modify and/or redistribute it under the terms of the simplified BSD License. You should have received a copy of this license along this program. If not, see http://www.opensource.org/licenses/bsd-license.html.
Type make
in the directory where the Makefile is located. The compilation of the source code provides three executables:
-
sift_cli
applies the SIFT method to a PNG image. Its uses either standard parameters (as documented in [1]) user selected parameters. -
match_cli
matches the SIFT keypoints extracted from two image. -
sift_cli_default
applies the SIFT method to a PNG image. Only uses standard parameters
./sift_cli image [options...] [> keys]
-ss_noct (8) number of octaves
-ss_nspo (3) number of scales per octaves
-ss_dmin (0.5) the sampling distance in the first octave
-ss_smin (0.8) blur level on the seed image
-ss_sin (0.5) assumed level of blur in the input image
-thresh_dog (0.0133) threshold over the DoG response
-thresh_edge (10) threshold over the ratio of principal curvature
-ori_nbins (36) number of bins in the orientation histogram
-ori_thresh (0.8) threhsold for considering local maxima in
the orientation histogram
-ori_lambda (1.5) sets how local is the analysis of the gradient
distribution
-descr_nhist (4) number of histograms per dimension
-descr_nori (8) number of bins in each histogram
-descr_lambda (6) sets how local the descriptor is
-verb_keys label flag to output the intermediary sets of keypoints
-verb_ss label flag to output the scalespaces (Gaussian and DoG)
match_cli keys1 keys2 [options...]
-ori_nbins (36) number of bins in the orientation histogram (used only for keypoints input/output)
-descr_nhist (4) number of histograms per dimension
-descr_nori (8) number of bins in each histogram
-absolute thresh (250) threshold applied on the euclidean distance
-relative thresh (0.6) threshold applied on the ratio of distance
-verb label flag for output
The output is a list of matches with the following formatting
x1 y1 sigma1 theta1 x2 y2 sigma2 theta 2
- OUTmatches.txt The pairs matches,
- [label]_im0.txt The subset of matching keypoints in the first image
- [label]_im1.txt The subset of matching keypoints in the second image
File 1) has the following formatting:
key1 key2a key2b
where (key1) designates a keypoint in image1, (key2a) and (key2b) designate respectively the nearest and the second nearest neighbors in image 2. The data relative to each keypoint is formatted as follows
x y sigma theta fv[1] fv[2] ... fv[d] octave scale orihist[1] ... orihist[n_bins]
where (fv) is the feature vector of dimension d=n_histn_histn_ori and(orihist) is the orientation histogram of n_bins bins.
File lib_sift.h
provides a simplified interface to the sift library.
-
To extract the keypoint from the SIFT scale-space.
struct sift_keypoint_std* sift_compute_points(double* x, int w, int h, int* n);
-
To compute the feature descriptors for oriented keypoints provided by the user:
void sift_fill_descriptors(double *x, int w, int h, struct sift_keypoint_std *k, int n);
-
To compute orientations and feature descriptors for keypoints provided by the user:
void sift_fill_descriptors(double *x, int w, int h, struct sift_keypoint_std *k, int n);
-
To run the standard sift algorithm:
struct sift_keypoint_std *sift_compute_features(double *x, int w, int h, int *n);
-
For input/output:
struct sift_keypoint_std *sift_read_from_file(char *filename, int *n); void sift_write_to_file(char *filename, struct sift_keypoint_std *k, int n);
These are the steps to follow in order to use the library lib_sift.h in a code.
- add
#include "lib_sift.h"
- compile object files:
lib_sift.o
lib_sift_anatomy.o
lib_scalespace.o
lib_keypoint.o
lib_description.o
lib_discrete.o
- link
Here a two short examples of source code with their respective compilation commands.
#include <stdlib.h>
#include "lib_sift.h"
int main(void)
{
// create input image
int w = 300;
int h = 200;
float *x = malloc(w*h*sizeof(*x));
for (int i = 0; i < w*h; i++)
x[i] = rand();
// compute sift keypoints
int n;
struct sift_keypoint_std *k = sift_compute_points(x, w, h, &n);
// write to standard output
sift_write_to_file("/dev/stdout", k, n);
// cleanup
free(k);
free(x);
return 0;
}
gcc -std=c99 -c -o lib_keypoint.o lib_keypoint.c
gcc -std=c99 -c -o lib_discrete.o lib_discrete.c
gcc -std=c99 -c -o lib_scalespace.o lib_scalespace.c
gcc -std=c99 -c -o lib_sift_anatomy.o lib_sift_anatomy.c
gcc -std=c99 -c -o lib_description.o lib_description.c
gcc -std=c99 -c -o lib_sift.o lib_sift.c
gcc -std=c99 -c -o lib_util.o lib_util.c
gcc -std=c99 -o example example.c lib_sift.o lib_sift_anatomy.o
lib_keypoint.o lib_scalespace.o lib_description.o \
lib_discrete.o lib_util.o -lm
#include <stdlib.h>
#include <stdio.h>
#include "lib_sift.h"
#include "io_png.h"
int main(int argc, char **argv)
{
if(arg != 2){
fprintf(stderr, "usage:\n./exemple2 image\n");
return -1;
}
// Loading image
size_t w, h;
float* x = io_png_read_f32_gray(argv[1], &w, &h);
for(int i=0; i < w*h; i++)
x[i] /=256.;
// compute sift keypoints
int n;
struct sift_keypoint_std *k = sift_compute_features(x, w, h, &n);
// write to standard output
sift_write_to_file("/dev/stdout", k, n);
// cleanup
free(k);
free(x);
return 0;
}
gcc -std=c99 -c -o lib_keypoint.o lib_keypoint.c
gcc -std=c99 -c -o lib_discrete.o lib_discrete.c
gcc -std=c99 -c -o lib_scalespace.o lib_scalespace.c
gcc -std=c99 -c -o lib_sift_anatomy.o lib_sift_anatomy.c
gcc -std=c99 -c -o lib_description.o lib_description.c
gcc -std=c99 -c -o lib_sift.o lib_sift.c
gcc -std=c99 -c -o lib_util.o lib_util.c
gcc -std=c99 -c -o io_png.o io_png.c
gcc -std=c99 -o example example.c lib_sift.o lib_sift_anatomy.o \
lib_keypoint.o lib_scalespace.o lib_description.o \
lib_discrete.o lib_util.o io_png.o -lm -lpng
The executable provided by D.Lowe (http://www.cs.ubc.ca/~lowe/keypoints/, retrieved on September 11th,2014) uses a different coordinate system. This results in different orientation and different feature vectors.
In Lowe's executable, the x component increases to the right and the y component increases upward and the coordinate system adopted in the description phase.
In this code, the x component increases downward and the y component increases to the right. This is consistent with the coordinate system used during detection.
A conversion tool is provided in the source called anatomy2lowe.c to convert To compile this tool
gcc -o anatomy2lowe anatomy2lowe.c -std=c99
To generate the documentation, type in the src/ directory :
doxygen -g
doxygen Doxyfile
doxygen documentation is in directory ./html/
Work partially supported by Centre National d’Etudes Spatiales (CNES, MISS Project), European Research Council (Advanced Grant Twelve Labours), Office of Naval Research (Grant N00014-97-1-0839), Direction Generale de l’Armement (DGA), Fondation Mathematique Jacques Hadamard, Agence Nationale de la Recherche (Stereo project). The author would like to thank Enric Meinhardt-Llopis for fruitful comments and discussions.