Skip to content
/ imodels Public
forked from csinva/imodels

Interpretable ML package πŸ” for concise, transparent, and accurate predictive modeling (sklearn-compatible).

License

Notifications You must be signed in to change notification settings

jankrk/imodels

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation


Python package for concise, transparent, and accurate predictive modeling. All sklearn-compatible and easy to use.

docs β€’ imodels overview β€’ demo notebooks

imodels overview

Modern machine-learning models are increasingly complex, often making them difficult to interpret. This package provides a simple interface for fitting and using state-of-the-art interpretable models, all compatible with scikit-learn. These models can often replace black-box models (e.g. random forests) with simpler models (e.g. rule lists) while improving interpretability and computational efficiency, all without sacrificing predictive accuracy! Simply import a classifier or regressor and use the fit and predict methods, same as standard scikit-learn models.

from imodels import BoostedRulesClassifier, BayesianRuleListClassifier, GreedyRuleListClassifier, SkopeRulesClassifier # see more models below
from imodels import SLIMRegressor, RuleFitRegressor

model = BoostedRulesClassifier()  # initialize a model
model.fit(X_train, y_train)   # fit model
preds = model.predict(X_test) # discrete predictions: shape is (n_test, 1)
preds_proba = model.predict_proba(X_test) # predicted probabilities: shape is (n_test, n_classes)
print(model) # print the rule-based model

-----------------------------
# the model consists of the following 3 rules
# if X1 > 5: then 80.5% risk
# else if X2 > 5: then 40% risk
# else: 10% risk

Installation

Install with pip install imodels (see here for help).

Supported models

Model Reference Description
Rulefit rule set πŸ—‚οΈ, πŸ”—, πŸ“„ Extracts rules from decision trees then fits a sparse linear model with them
Skope rule set πŸ—‚οΈ, πŸ”— Extracts rules from gradient-boosted trees, deduplicates them, then forms a linear combination of them based on their OOB precision
Boosted rule set πŸ—‚οΈ, πŸ”—, πŸ“„ Sequentially learns a set of rules with Adaboost
Slipper rule set πŸ—‚οΈ, πŸ“„ Sequentially learns a set of rules with SLIPPER
Bayesian rule set πŸ—‚οΈ, πŸ”—, πŸ“„ Finds concise rule set with Bayesian sampling (slow)
Optimal rule list πŸ—‚οΈ, πŸ”—, πŸ“„ Learns succinct rule list using global optimization for sparsity (CORELS)
Bayesian rule list πŸ—‚οΈ, πŸ”—, πŸ“„ Learns compact rule list distribution with Bayesian sampling (slow)
Greedy rule list πŸ—‚οΈ, πŸ”— Uses CART to learn a list (only a single path), rather than a decision tree
OneR rule list πŸ—‚οΈ, πŸ“„ Learns rule list restricted to only one feature
Optimal rule tree πŸ—‚οΈ, πŸ”—, πŸ“„ Learns succinct tree using global optimization for sparsity (GOSDT)
Greedy rule tree πŸ—‚οΈ, πŸ”—, πŸ“„ Greedily learns tree using CART
C4.5 rule tree πŸ—‚οΈ, πŸ”—, πŸ“„ Greedily learns tree using C4.5
Iterative random forest πŸ—‚οΈ, πŸ”—, πŸ“„ (In progress) Repeatedly fit random forest, giving features with high importance a higher chance of being selected
Sparse integer linear model πŸ—‚οΈ, πŸ“„ Sparse linear model with integer coefficients
Sapling Sums πŸ—‚οΈ, πŸ“„ Sum of small trees with very few total rules (SAPS)
Shrunk trees πŸ—‚οΈ, πŸ“„ Use regularization to improve trees
More models βŒ› (Coming soon!) Popular rule sets including Lightweight Rule Induction, MLRules

Docs πŸ—‚οΈ, Reference code implementation πŸ”—, Research paper πŸ“„

Also see our util functions for downloading popular tabular datasets (e.g. compas). These functions, in conjunction with imodels-data and imodels-experiments, make it simple to download data and run experiments on new models.
Also see our simple function for explaining classification errors. Fit an interpretable model to explain a previous model's errors (ex. in this notebookπŸ““).
Also see our fast and effective discretizers for data preprocessing.
Discretizer Reference Description
MDLP πŸ—‚οΈ, πŸ”—, πŸ“„ Discretize using entropy minimization heuristic
Simple πŸ—‚οΈ, πŸ”— Simple KBins discretization
Random Forest πŸ—‚οΈ Discretize into bins based on random forest split popularity

The final form of the above models takes one of the following forms, which aim to be simultaneously simple to understand and highly predictive:

Rule set Rule list Rule tree Algebraic models

Different models and algorithms vary not only in their final form but also in different choices made during modeling. In particular, many models differ in the 3 steps given by the table below.

ex. RuleFit and SkopeRules RuleFit and SkopeRules differ only in the way they prune rules: RuleFit uses a linear model whereas SkopeRules heuristically deduplicates rules sharing overlap.
ex. Bayesian rule lists and greedy rule lists Bayesian rule lists and greedy rule lists differ in how they select rules; bayesian rule lists perform a global optimization over possible rule lists while Greedy rule lists pick splits sequentially to maximize a given criterion.
ex. FPSkope and SkopeRules FPSkope and SkopeRules differ only in the way they generate candidate rules: FPSkope uses FPgrowth whereas SkopeRules extracts rules from decision trees.

See the docs for individual models for futher descriptions.

Rule candidate generation Rule selection Rule postprocessing

The code here contains many useful and customizable functions for rule-based learning in the util folder. This includes functions / classes for rule deduplication, rule screening, and converting between trees, rulesets, and neural networks.

Demo notebooks

Demos are contained in the notebooks folder.

imodels demo Shows how to fit, predict, and visualize with different interpretable models
imodels colab demo Shows how to fit, predict, and visualize with different interpretable models
clinical decision rule notebook Shows an example of using imodels for deriving a clinical decision rule
posthoc analysis We also include some demos of posthoc analysis, which occurs after fitting models: posthoc.ipynb shows different simple analyses to interpret a trained model and uncertainty.ipynb contains basic code to get uncertainty estimates for a model

Support for different tasks

Different models support different machine-learning tasks. Current support for different models is given below (each of these models can be imported directly from imodels (e.g. from imodels import RuleFitClassifier):

Model Binary classification Regression
Rulefit rule set RuleFitClassifier RuleFitRegressor
Skope rule set SkopeRulesClassifier
Boosted rule set BoostedRulesClassifier
SLIPPER rule set SlipperClassifier
Bayesian rule set BayesianRuleSetClassifier
Optimal rule list (CORELS) OptimalRuleListClassifier
Bayesian rule list BayesianRuleListClassifier
Greedy rule list GreedyRuleListClassifier
OneR rule list OneRClassifier
Optimal rule tree (GOSDT) OptimalTreeClassifier
Greedy rule tree (CART) GreedyTreeClassifier GreedyTreeRegressor
C4.5 rule tree C45TreeClassifier
Iterative random forest IRFClassifier
Sparse integer linear model SLIMClassifier SLIMRegressor
Sapling Sums (SAPS) SaplingSumClassifier SaplingSumRegressor
Shrunk trees ShrunkTreeClassifierCV ShrunkTreeRegressorCV

References

Readings
  • Interpretable ML good quick overview: murdoch et al. 2019, pdf
  • Interpretable ML book: molnar 2019, pdf
  • Case for interpretable models rather than post-hoc explanation: rudin 2019, pdf
  • Review on evaluating interpretability: doshi-velez & kim 2017, pdf
Reference implementations (also linked above) The code here heavily derives from the wonderful work of previous projects. We seek to to extract out, unify, and maintain key parts of these projects.
Related packages
  • gplearn: symbolic regression/classification
  • pysr: fast symbolic regression
  • pygam: generative additive models
  • interpretml: boosting-based gam
  • h20 ai: gams + glms (and more)
  • optbinning: data discretization / scoring models
Updates
  • For updates, star the repo, see this related repo, or follow @csinva_
  • Please make sure to give authors of original methods / base implementations appropriate credit!
  • Contributing: pull requests very welcome!

If it's useful for you, please star/cite the package, and make sure to give authors of original methods / base implementations credit:

@software{
    imodels2021,
    title        = {{imodels: a python package for fitting interpretable models}},
    journal      = {Journal of Open Source Software}
    publisher    = {The Open Journal},
    year         = {2021},
    author       = {Singh, Chandan and Nasseri, Keyan and Tan, Yan Shuo and Tang, Tiffany and Yu, Bin},
    volume       = {6},
    number       = {61},
    pages        = {3192},
    doi          = {10.21105/joss.03192},
    url          = {https://doi.org/10.21105/joss.03192},
}

About

Interpretable ML package πŸ” for concise, transparent, and accurate predictive modeling (sklearn-compatible).

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 76.9%
  • Python 23.1%