Given two strings text1
and text2
, return the length of their longest common subsequence. If there is no common subsequence, return 0
.
A subsequence of a string is a new string generated from the original string with some characters (can be none) deleted without changing the relative order of the remaining characters.
- For example,
"ace"
is a subsequence of"abcde"
.
A common subsequence of two strings is a subsequence that is common to both strings.
Example 1:
Input: text1 = "abcde", text2 = "ace"
Output: 3
Explanation: The longest common subsequence is "ace" and its length is 3.
Example 2:
Input: text1 = "abc", text2 = "abc"
Output: 3
Explanation: The longest common subsequence is "abc" and its length is 3.
Example 3:
Input: text1 = "abc", text2 = "def"
Output: 0
Explanation: There is no such common subsequence, so the result is 0.
Constraints:
1 <= text1.length, text2.length <= 1000
text1
andtext2
consist of only lowercase English characters.
給定兩個字串 text1, text2
要求寫一個演算法找出 text1, text2 最大共同子字串的長度
這邊定義每個字串 s 的子字串 是從 s 的字元中刪除幾個字元所形成的字串
共同子字串 common_substring 代表 同時是 text1, text2 的子字串
len(common_substring) ≤ min(len(text1), len(text2))
要透過動態規劃的作法
先思考如何去找出該問題的子問題
舉例來說: text1: “abcde”, text2: “ace”
當發現 兩個字串的第一個字元相等
找 “abcde” , “ace” 最長子字串長度 = 1 + “bcde”, “ce” 最長子字串長度
如果是順向去找會發現有些字串會重複查找
可以從反向來思考
兩個字串都以從第i 個位置到最後逐步考慮更長字串所能找到的子字串
首先定義 d[i][j]
第1個字串從第i個位置開始從第 i 字元開始與
第2個字串 從第 j 個開始所形成的最長字串長度
可以發現
d[i][j] = d[i+1][j+1]+1 , if text1[i] == text2[j]
d[i][j] = max(d[i+1][j], d[i][j+1]) if text1[i] ≠ text2[j]
public class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length();
int n = text2.length();
int[][] dp = new int[m+1][n+1];
// from last index to calculate max common substring length
// dp[i][j] = dp[i+1][j+1]+1 if text1[i] == text2[j]
// dp[i][j] = max(dp[i+1][j], dp[i][j+1]) if text1[i] != text2[j]
for (int i = m-1; i >= 0; i--) {
for (int j = n-1; j >= 0; j--) {
if (text1.charAt(i) == text2.charAt(j)) {
dp[i][j] = dp[i+1][j+1] + 1;
} else {
dp[i][j] = Math.max(dp[i+1][j], dp[i][j+1]);
}
}
}
return dp[0][0];
}
}
- 要能找出最長子字串的遞迴子關係
- 建立一個 m+1 by n+1 的整數矩陣 dp 用來儲存動態規劃的中間計算結果
- 透過 dp[i][j] 的遞迴關係式從 i = m+1, j = n+1 逐步往前推算
- 回傳 dp[0][0]