Skip to content

Implement missing Math logarithm functions from ES6 #3617

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Apr 4, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 0 additions & 16 deletions jerry-core/ecma/builtin-objects/ecma-builtin-math.c
Original file line number Diff line number Diff line change
Expand Up @@ -570,38 +570,22 @@ ecma_builtin_math_dispatch_routine (uint16_t builtin_routine_id, /**< built-in w
}
case ECMA_MATH_OBJECT_EXPM1:
{
#ifdef JERRY_LIBM_MATH_H
return ecma_raise_type_error (ECMA_ERR_MSG ("UNIMPLEMENTED: Math.expm1"));
#else /* !JERRY_LIBM_MATH_H */
x = DOUBLE_TO_ECMA_NUMBER_T (expm1 (x));
#endif /* JERRY_LIBM_MATH_H */
break;
}
case ECMA_MATH_OBJECT_LOG1P:
{
#ifdef JERRY_LIBM_MATH_H
return ecma_raise_type_error (ECMA_ERR_MSG ("UNIMPLEMENTED: Math.log1p"));
#else /* !JERRY_LIBM_MATH_H */
x = DOUBLE_TO_ECMA_NUMBER_T (log1p (x));
#endif /* JERRY_LIBM_MATH_H */
break;
}
case ECMA_MATH_OBJECT_LOG10:
{
#ifdef JERRY_LIBM_MATH_H
return ecma_raise_type_error (ECMA_ERR_MSG ("UNIMPLEMENTED: Math.log10"));
#else /* !JERRY_LIBM_MATH_H */
x = DOUBLE_TO_ECMA_NUMBER_T (log10 (x));
#endif /* JERRY_LIBM_MATH_H */
break;
}
case ECMA_MATH_OBJECT_LOG2:
{
#ifdef JERRY_LIBM_MATH_H
return ecma_raise_type_error (ECMA_ERR_MSG ("UNIMPLEMENTED: Math.log2"));
#else /* !JERRY_LIBM_MATH_H */
x = DOUBLE_TO_ECMA_NUMBER_T (log2 (x));
#endif /* JERRY_LIBM_MATH_H */
break;
}
case ECMA_MATH_OBJECT_SINH:
Expand Down
305 changes: 305 additions & 0 deletions jerry-libm/expm1.c
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
/* Copyright JS Foundation and other contributors, http://js.foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is based on work under the following copyright and permission
* notice:
*
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
*
* @(#)s_expm1.c 5.1 93/09/24
*/

#include "jerry-libm-internal.h"

/* expm1(x)
* Returns exp(x)-1, the exponential of x minus 1.
*
* Method
* 1. Argument reduction:
* Given x, find r and integer k such that
*
* x = k*ln2 + r, |r| <= 0.5*ln2 ~ 0.34658
*
* Here a correction term c will be computed to compensate
* the error in r when rounded to a floating-point number.
*
* 2. Approximating expm1(r) by a special rational function on
* the interval [0,0.34658]:
* Since
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
* we define R1(r*r) by
* r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
* That is,
* R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
* = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
* = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
* We use a special Reme algorithm on [0,0.347] to generate
* a polynomial of degree 5 in r*r to approximate R1. The
* maximum error of this polynomial approximation is bounded
* by 2**-61. In other words,
* R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
* where Q1 = -1.6666666666666567384E-2,
* Q2 = 3.9682539681370365873E-4,
* Q3 = -9.9206344733435987357E-6,
* Q4 = 2.5051361420808517002E-7,
* Q5 = -6.2843505682382617102E-9;
* z = r*r,
* with error bounded by
* | 5 | -61
* | 1.0+Q1*z+...+Q5*z - R1(z) | <= 2
* | |
*
* expm1(r) = exp(r)-1 is then computed by the following
* specific way which minimize the accumulation rounding error:
* 2 3
* r r [ 3 - (R1 + R1*r/2) ]
* expm1(r) = r + --- + --- * [--------------------]
* 2 2 [ 6 - r*(3 - R1*r/2) ]
*
* To compensate the error in the argument reduction, we use
* expm1(r+c) = expm1(r) + c + expm1(r)*c
* ~ expm1(r) + c + r*c
* Thus c+r*c will be added in as the correction terms for
* expm1(r+c). Now rearrange the term to avoid optimization
* screw up:
* ( 2 2 )
* ({ ( r [ R1 - (3 - R1*r/2) ] ) } r )
* expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
* ({ ( 2 [ 6 - r*(3 - R1*r/2) ] ) } 2 )
* ( )
*
* = r - E
* 3. Scale back to obtain expm1(x):
* From step 1, we have
* expm1(x) = either 2^k*[expm1(r)+1] - 1
* = or 2^k*[expm1(r) + (1-2^-k)]
* 4. Implementation notes:
* (A). To save one multiplication, we scale the coefficient Qi
* to Qi*2^i, and replace z by (x^2)/2.
* (B). To achieve maximum accuracy, we compute expm1(x) by
* (i) if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
* (ii) if k=0, return r-E
* (iii) if k=-1, return 0.5*(r-E)-0.5
* (iv) if k=1 if r < -0.25, return 2*((r+0.5)- E)
* else return 1.0+2.0*(r-E);
* (v) if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
* (vi) if k <= 20, return 2^k((1-2^-k)-(E-r)), else
* (vii) return 2^k(1-((E+2^-k)-r))
*
* Special cases:
* expm1(INF) is INF, expm1(NaN) is NaN;
* expm1(-INF) is -1, and
* for finite argument, only expm1(0)=0 is exact.
*
* Accuracy:
* according to an error analysis, the error is always less than
* 1 ulp (unit in the last place).
*
* Misc. info.
* For IEEE double
* if x > 7.09782712893383973096e+02 then expm1(x) overflow
*
* Constants:
* The hexadecimal values are the intended ones for the following
* constants. The decimal values may be used, provided that the
* compiler will convert from decimal to binary accurately enough
* to produce the hexadecimal values shown.
*/

#define one 1.0
#define huge 1.0e+300
#define tiny 1.0e-300
#define o_threshold 7.09782712893383973096e+02 /* 0x40862E42, 0xFEFA39EF */
#define ln2_hi 6.93147180369123816490e-01 /* 0x3fe62e42, 0xfee00000 */
#define ln2_lo 1.90821492927058770002e-10 /* 0x3dea39ef, 0x35793c76 */
#define invln2 1.44269504088896338700e+00 /* 0x3ff71547, 0x652b82fe */

/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
#define Q1 -3.33333333333331316428e-02 /* BFA11111 111110F4 */
#define Q2 1.58730158725481460165e-03 /* 3F5A01A0 19FE5585 */
#define Q3 -7.93650757867487942473e-05 /* BF14CE19 9EAADBB7 */
#define Q4 4.00821782732936239552e-06 /* 3ED0CFCA 86E65239 */
#define Q5 -2.01099218183624371326e-07 /* BE8AFDB7 6E09C32D */

double
expm1 (double x)
{
double y, hi, lo, c, e, hxs, hfx, r1;
double_accessor t, twopk;
int k, xsb;
unsigned int hx;

hx = __HI (x);
xsb = hx & 0x80000000; /* sign bit of x */
hx &= 0x7fffffff; /* high word of |x| */

/* filter out huge and non-finite argument */
if (hx >= 0x4043687A)
{
/* if |x|>=56*ln2 */
if (hx >= 0x40862E42)
{
/* if |x|>=709.78... */
if (hx >= 0x7ff00000)
{
unsigned int low;
low = __LO (x);
if (((hx & 0xfffff) | low) != 0)
{
/* NaN */
return x + x;
}
else
{
/* exp(+-inf)-1={inf,-1} */
return (xsb == 0) ? x : -1.0;
}
}
if (x > o_threshold)
{
/* overflow */
return huge * huge;
}
}
if (xsb != 0)
{
/* x < -56*ln2, return -1.0 with inexact */
if (x + tiny < 0.0) /* raise inexact */
{
/* return -1 */
return tiny - one;
}
}
}

/* argument reduction */
if (hx > 0x3fd62e42)
{
/* if |x| > 0.5 ln2 */
if (hx < 0x3FF0A2B2)
{
/* and |x| < 1.5 ln2 */
if (xsb == 0)
{
hi = x - ln2_hi;
lo = ln2_lo;
k = 1;
}
else
{
hi = x + ln2_hi;
lo = -ln2_lo;
k = -1;
}
}
else
{
k = (int) (invln2 * x + ((xsb == 0) ? 0.5 : -0.5));
t.dbl = k;
hi = x - t.dbl * ln2_hi; /* t*ln2_hi is exact here */
lo = t.dbl * ln2_lo;
}
x = hi - lo;
c = (hi - x) - lo;
}
else if (hx < 0x3c900000)
{
/* when |x|<2**-54, return x */
return x;
}
else
{
k = 0;
}

/* x is now in primary range */
hfx = 0.5 * x;
hxs = x * hfx;
r1 = one + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
t.dbl = 3.0 - r1 * hfx;
e = hxs * ((r1 - t.dbl) / (6.0 - x * t.dbl));
if (k == 0)
{
/* c is 0 */
return x - (x * e - hxs);
}
else
{
twopk.as_int.hi = 0x3ff00000 + ((unsigned int) k << 20); /* 2^k */
twopk.as_int.lo = 0;
e = (x * (e - c) - c);
e -= hxs;
if (k == -1)
{
return 0.5 * (x - e) - 0.5;
}
if (k == 1)
{
if (x < -0.25)
{
return -2.0 * (e - (x + 0.5));
}
else
{
return one + 2.0 * (x - e);
}
}
if ((k <= -2) || (k > 56))
{
/* suffice to return exp(x)-1 */
y = one - (e - x);
if (k == 1024)
{
y = y * 2.0 * 0x1p1023;
}
else
{
y = y * twopk.dbl;
}
return y - one;
}
t.dbl = one;
if (k < 20)
{
t.as_int.hi = (0x3ff00000 - (0x200000 >> k)); /* t=1-2^-k */
y = t.dbl - (e - x);
y = y * twopk.dbl;
}
else
{
t.as_int.hi = ((0x3ff - k) << 20); /* 2^-k */
y = x - (e + t.dbl);
y += one;
y = y * twopk.dbl;
}
}
return y;
} /* expm1 */

#undef one
#undef huge
#undef tiny
#undef o_threshold
#undef ln2_hi
#undef ln2_lo
#undef invln2
#undef Q1
#undef Q2
#undef Q3
#undef Q4
#undef Q5
4 changes: 4 additions & 0 deletions jerry-libm/include/math.h
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,11 @@ double atan2 (double, double);

/* Exponential and logarithmic functions. */
double exp (double);
double expm1 (double);
double log (double);
double log1p (double);
double log2 (double);
double log10 (double);

/* Power functions. */
double pow (double, double);
Expand Down
4 changes: 4 additions & 0 deletions jerry-libm/jerry-libm-internal.h
Original file line number Diff line number Diff line change
Expand Up @@ -89,7 +89,11 @@ double sin (double x);
double tan (double x);

double exp (double x);
double expm1 (double x);
double log (double x);
double log1p (double x);
double log2 (double x);
double log10 (double);

double pow (double x, double y);
double sqrt (double x);
Expand Down
Loading