-
Notifications
You must be signed in to change notification settings - Fork 0
/
sun.tex
executable file
·1085 lines (908 loc) · 38.2 KB
/
sun.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[a4paper]{article}
%\usepackage[english,frenchb,german,italian,latin]{babel}
\usepackage[utf8]{luainputenc}
\usepackage{luaotfload}
%\usepackage{graphicx}
%\usepackage{textcomp}
%\usepackage[dvips]{hyperref}
\usepackage{breakurl}
\usepackage{perltex}
%\usepackage{luamplib}
\usepackage{luatexko-mplib}
% marge haute 25.4 - 12 = 13.4 mm
\topmargin=-12mm
\headheight=0mm
\headsep=4mm
% marge basse 297 - (13.4 + 267 + 4) = 12.6mm
\textheight=267mm
% marge gauche 25,4mm,
% marge droite 210 - (25,4 + 173) = 11,6mm
\oddsidemargin=0mm
\marginparsep=0mm
\textwidth=173mm
\columnsep=8mm
%&Latex
\renewcommand{\rmdefault}[0]{ppl}
\renewcommand{\sfdefault}[0]{phv}
\renewcommand{\ttdefault}[0]{pcr}
\newcommand{\datenum}{\number\year-%
\ifnum\month<10\relax0\fi\number\month-%
\ifnum\day<10\relax0\fi\number\day}
\newenvironment{texte}{\rmfamily}{}
%\newcommand{\fran}[0]{\selectlanguage{french}}
%\newcommand{\angl}[0]{\selectlanguage{english}}
%\newcommand{\er}[0]{$^\mathrm{er}$}
%\newcommand{\re}[0]{$^\mathrm{re}$}
%\newcommand{\me}[0]{$^\mathrm{e}$}
\newcommand{\ee}[0]{$^\mathrm{e}$}
%\newcommand{\nd}[0]{$^\mathrm{nd}$}
%\newcommand{\nth}[0]{$^\mathrm{th}$}
\pagestyle{myheadings}
\markright{\sffamily\upshape\kern 8mm\datenum\hfill {\bfseries\normalsize Trial of Metaperlua\LaTeX}\kern 15mm\hfill Page }
%\NoAutoSpaceBeforeFDP
\newcommand{\everisehhmmss}[0]{08:15:00}
\newcommand{\evenoonhhmmss}[0]{12:00:00}
\newcommand{\evesethhmmss}[0]{18:15:00}
\newcommand{\dayrisehhmmss}[0]{08:15:00}
\newcommand{\daynoonhhmmss}[0]{12:00:00}
\newcommand{\daysethhmmss}[0]{18:15:00}
\newcommand{\deltalight}[0]{0}
\newcommand{\deltarise}[0]{0}
\newcommand{\deltanoon}[0]{0}
\newcommand{\deltaset}[0]{0}
\newcommand{\formularise}[0]{\[ \deltanoon - \frac{\deltalight}{2} = \deltarise \]}
\newcommand{\formulaset}[0]{\[ \deltanoon + \frac{\deltalight}{2} = \deltaset \]}
\perlnewcommand{\riseandset}[5]{
use v5.10;
use strict;
use warnings;
use DateTime::Event::Sunrise;
my ($day_begin, $delta, $nb, $full, $show_day) = @_;
my ($year, $month, $day) = unpack("a4 a2 a2", $day_begin);
my ($long, $lat) = qw/0 51.47/; # Greenwhich
# my ($long, $lat) = qw/-5.53 50.08/; # Penzance
my $lever = DateTime::Event::Sunrise->sunrise(longitude => $long
, latitude => $lat, iteration => 1);
my $coucher = DateTime::Event::Sunrise->sunset(longitude => $long
, latitude => $lat, iteration => 1);
#"Lever du soleil à " . $lever->next($day)->strftime("%H:%M:%S\n")
#. "Coucher du soleil à " . $coucher->next($day)->strftime("%H:%M:%S\n");
my ($aaaa, $mm, $jj) = unpack("a4 a2 a2", $show_day);
print "year $aaaa, month $mm, day $jj\n";
my $show_dt = DateTime->new(year => $aaaa, month => $mm, day => $jj, locale => 'en');
my $eve = $show_dt->clone->add(days => -1);
print $eve->strftime("%Y-%m-%d%n");
my $dayrisehhmmss = '';
my $everisehhmmss = '';
my $evenoonhhmmss = '';
my $daynoonhhmmss = '';
my $evesethhmmss = '';
my $daysethhmmss = '';
my $deltalight = 0;
my $deltarise = 0;
my $deltanoon = 0;
my $deltaset = 0;
my $show_day_found = 0;
my $table;
if ($full) {
$table = <<'TAB';
\begin{tabular}{|c|c|c|c|r|r|r|r|}
\hline
Day & rise & noon & set & var.morn & var.even & var.length & var.noon \\
\hline
TAB
}
else {
$table = <<'TAB';
\begin{tabular}{|c|c|c|r|r|}
\hline
Day & rise & set & var.morn & var.even \\
\hline
TAB
}
my $day = DateTime->new(year => $year, month => $month, day => $day)->add(days => - $delta);
my $matin = $lever->next($day);
my $soir = $coucher->next($day);
my $s_matin = $matin->hour * 3600 + $matin->minute * 60 + $matin->second;
my $s_soir = $soir ->hour * 3600 + $soir ->minute * 60 + $soir ->second;
my $s_midi = ($s_matin + $s_soir) / 2;
for (1..$nb) {
my $s_matin_av = $s_matin;
my $s_soir_av = $s_soir;
my $s_midi_av = $s_midi;
my $day = $day->add(days => $delta);
my $matin = $lever->next($day);
my $soir = $coucher->next($day);
$s_matin = $matin->hour * 3600 + $matin->minute * 60 + $matin->second;
$s_soir = $soir ->hour * 3600 + $soir ->minute * 60 + $soir ->second;
$s_midi = ($s_matin + $s_soir) / 2;
my $midi = $day->clone->add(seconds => $s_midi);
if ($full) {
my $variations = sprintf("& %d & %d & %d & %d\\\\\n", $s_matin - $s_matin_av, $s_soir - $s_soir_av, $s_matin_av - $s_matin + $s_soir - $s_soir_av, $s_midi - $s_midi_av);
$table .= $matin->strftime("%Y-%m-%d & %H:%M:%S\n") . '&' . $midi->strftime("%H:%M:%S") . '&' . $soir->strftime("%H:%M:%S") . $variations;
}
else {
my $variations = sprintf("& %d & %d\\\\\n", $s_matin - $s_matin_av, $s_soir - $s_soir_av);
$table .= $matin->strftime("%Y-%m-%d & %H:%M:%S\n") . '&' . $soir->strftime("%H:%M:%S") . $variations;
}
if ($day->strftime("%Y%m%d") eq $show_day) {
$dayrisehhmmss = $matin->strftime("%H:%M:%S");
$daynoonhhmmss = $midi->strftime("%H:%M:%S");
$daysethhmmss = $soir->strftime("%H:%M:%S");
$deltalight = $s_matin_av - $s_matin + $s_soir - $s_soir_av;
$deltarise = $s_matin - $s_matin_av;
$deltanoon = $s_midi - $s_midi_av;
$deltaset = $s_soir - $s_soir_av;
#print $dayrisehhmmss, "\n";
$show_day_found = 1;
}
elsif ($show_day_found == 0) {
$everisehhmmss = $matin->strftime("%H:%M:%S");
$evenoonhhmmss = $midi->strftime("%H:%M:%S");
$evesethhmmss = $soir->strftime("%H:%M:%S");
}
}
my ($sgn_rise, $sgn_noon, $sgn_set) = ('', '', '');
if ($deltarise > 0) {
$sgn_rise = '+';
}
if ($deltanoon > 0) {
$sgn_noon = '+';
}
if ($deltaset > 0) {
$sgn_set = '+';
}
$table .= <<"EOF";
\\hline\n\\end{tabular}
\\renewcommand{\\dayrisehhmmss}[0]{$dayrisehhmmss}
\\renewcommand{\\everisehhmmss}[0]{$everisehhmmss}
\\renewcommand{\\evenoonhhmmss}[0]{$evenoonhhmmss}
\\renewcommand{\\daynoonhhmmss}[0]{$daynoonhhmmss}
\\renewcommand{\\evesethhmmss}[0]{$evesethhmmss}
\\renewcommand{\\daysethhmmss}[0]{$daysethhmmss}
\\renewcommand{\\deltalight}[0]{$deltalight}
\\renewcommand{\\deltarise}[0]{$deltarise}
\\renewcommand{\\deltanoon}[0]{$deltanoon}
\\renewcommand{\\deltaset}[0]{$deltaset}
\\renewcommand{\\formularise}[0]{\\[ $sgn_noon$deltanoon - \\frac{$deltalight}{2} = $sgn_rise$deltarise \\]}
\\renewcommand{\\formulaset}[0]{\\[ $sgn_noon$deltanoon + \\frac{$deltalight}{2} = $sgn_set$deltaset \\]}
EOF
return $table
}
% Display a positive number in scientific mode with three digits after the decimal point
% and computation of the gravitational force between Earth and another celestial body
\directlua{
function affsci(n)
local expo = math.floor(math.log(n) / math.log(10));
local mant = n / 10 ^ expo;
local factor = 1000;
mant = math.floor(mant * factor) / factor;
return tex.sprint("$" .. tostring(mant) .. string.char(92) .. "times{}10^{" .. tostring(expo) .. "}$")
end
function force(mass, dist)
local G = 6.673e-11;
local earthmass = 5.973e+24;
return affsci(G * earthmass * mass / (dist * dist));
end
}
\newcommand{\solarmass}{1.989e+30}
\newcommand{\solardist}{1.49+12}
\newcommand{\lunarmass}{7.374e22}
\newcommand{\lunardist}{3.844e+8}
\newcommand{\jupitermass}{1.898e+27}
\newcommand{\jupiterdist}{778.3e+9}
\begin{document}
\begin{texte}
\tolerance=1000
%\angl
\section{What Is The Problem}
This text is a showcase for the \texttt{mpll} tool, or
\textit{Metaperlualatex} tool. This is a document written in \LaTeX,
and using Perl functions, MetaPost drawings
and Lua functions (a few).
Yet, this document is not an artificial document whose
only purpose is to pack significant \textit{Metaperlualatex} features in a
meaningless text. It is also an explanation
of a real phenomenon which can be observed
in December (in temperate areas in the Northern hemisphere).
During the fall, the sun rises later and later
and sets sooner and sooner. No surprise there.
During the spring, the sun rises earlier and earlier
and sets later and later.
No surprise there either. But from
14th December until 1st January
the sun rises later and later and it also sets later
and later. In other words, the day gradually replaces
the night during the evening, while the night
still gradually replaces the day during the morning,
as can be seen in the table below.
\vspace{2mm}
\riseandset{20111205}{7}{9}{0}{20111224}
\vspace{2mm}
On the other side, this document is not a scientific publication
with strict computations of celestial movements.
It is rather an explanation for an intuitive
understanding of some mostly unknown aspects
of Earth's movement.
For a more precise explanation, yet still readable by a layman,
you can refer to the French-written book
``Histoire de l'Heure en France'', by Jacques Gapaillard,
published by Vuibert -- ADAPT.
As said above, the document applies to temperate areas in
the Northern hemisphere. Around the equator, the variation
of daylight is not sufficient for the reasoning to be valid.
In the polar areas, the continous night in winter and the continuous
daylight in summer play havoc with the reasoning. And in temperate
areas of the Southern hemisphere, it might be sufficient to
shift all dates by six months, so the winter falls in June and the
spring falls in September.
The algorithm used to compute the sunrise and the sunset is
Paul Schlyter's algorithm.
\section{Solar Noon And The Variations Of Sunrise And Sunset}
\subsection{The Various Types Of Noon}
%\vspace{2mm}
%\riseandset{20120210}{1}{10}{1}{20111224}
%
%\riseandset{20121101}{1}{10}{1}{20111224}
%\vspace{2mm}
If you explain to a XXIth Century person that there are
two notions of ``noon'', the astronomical noon, which is
the instant where the sun is at its highest in the
sky and is aligned with the local meridian, and the
mean noon (or rather, ``mean time noon''), which can
be obtained with a watch or a clock, if you explain that
the offset between these two instants varies from a
day to the other, this XXIth century person, if leaving
in Great Britain for example, will answer
``Of course, during the summer the astronomical noon is
one hour behind the mean noon, while they are the same
during winter.'' After a little thinking, this person
will add that this also depends on the place you live
in: ``This is for Kent, although in Cornwall, the
astronomical noon is half-an-hour behind
the mean noon in winter and one hour and a half minutes behind
the mean noon in summer.''
This person confuses the ``legal hour'' with the ``mean time''
and the ``mean noon'' with the ``astronomical noon''.
If we attempt to explain him that, for Kent in winter,
the difference between ``astronomical noon'' and ``mean noon''
may vary from 14 minutes in one direction
and 17 minutes in the other, this person
will no longer understand.
On the other side, if you explain to a XVIIIth century
person that the astronomical noon oscillates on both
sides of the mean noon and that this gap may reach
one quarter of an hour, it is more likely
that this person will approve, especially if he works
with clocks or sundials. This person would not understand
the notion of ``legal time'', because it did not exist
at the time, but he would understand the irregularities
of the crossing of the meridian by the sun.
In this time, it was well-known that the interval
between two successive times when the sun crosses
the meridian was not a constant. Yet, as J. Gapaillard
explains in his book, even in this time, there were many people
who erroneously thought that the apparent movement of
the sun around the Earth was constant within one second.
In the first part, we posit, without explanation, that
the astronomical noon varies with respect to the
mean noon and we explain how this results in the
paradoxical variation of sunrise and sunset in December.
In the second part, the document explains why there
exists a variation between the astronomical noon
and the mean noon.
\subsection{Real Life Example}
The table below give the sunrise and sunset hours, as well
as the astronomical noon, in Greenwich in March 2011.
Using Greenwich allows to equate the UTC time with
the mean time (the formerly well-known GMT), within a
few seconds. The table gives the time of sunrise,
of sunset, of noon and the variations (in seconds)
with the previous day. Also shown is the variation
of the day length.
\vspace{2mm}
\riseandset{20110316}{1}{15}{1}{20110321}
\vspace{2mm}
Let us consider 21st March. On this date, the daylight
increases by \deltalight{} seconds, that is, a bit less
than 4 minutes. The solar noon switch
from \evenoonhhmmss{} to \daynoonhhmmss{} so it shifts
by \deltanoon{} seconds. One half of the daylight increase
applies to the sunrise (which comes earlier) and the other half to sunset
(which comes later). On the other side, the variation of
solar noon applies in full to both sunrise and sunset, and
with the same direction. So, since the solar noon shifts
by \deltanoon{} seconds and the daylight increases by
\deltalight{} seconds, sunrise moves by
\formularise{}
that is, it moves backward from \everisehhmmss{} to \dayrisehhmmss{}
while sunset moves by
\formulaset{}
that is, it moves forward from \evesethhmmss{} to \daysethhmmss{}.
There is a difference, but most persons do not notice,
since the daylight variation is much greater than the
solar noon shift.
\vspace{5mm}
Now, let us consider 23th December.
\vspace{2mm}
\riseandset{20111216}{1}{15}{1}{20111223}
\vspace{2mm}
The daylight increases by \deltalight{} second,
while the solar noon moves by \deltanoon{} seconds,
shifting from \evenoonhhmmss{} to \daynoonhhmmss{}
(allowing for rounding errors).
The sunrise moves by:
\formularise{}
that is, the sunrise moves by \deltarise{}
seconds, shifting from \everisehhmmss{} to \dayrisehhmmss{};
while the sunset moves by:
\formulaset{}
that is, moves by \deltaset{} seconds,
shifting from \evesethhmmss{} to \daysethhmmss{}.
In this case, the solar noon variation is much greater
that the half of the daylight variation, so the sunrise and
the sunset move in the same direction.
\vspace{5mm}
\subsection{Mea Culpa}
In the previous section, I made a logical mistake.
I have equated the solar noon with the precise instant located midway
between sunrise and sunset. This is nothing more than
an approximation. Let use go back to the March table.
\vspace{2mm}
\riseandset{20110320}{1}{3}{1}{20110321}
\vspace{2mm}
On 20th March, the daylight lasts 12 h 10 mn 09 s, that is, 43~809 seconds.
On 21st March, it lasts 12 h 14 mn 08 s, that is, 44~048 seconds
and on 22nd March, it lasts 12 h 18 mn 5 s, that is, 44~285 seconds.
This does not mean that on 20th March at 23 h 59, the daylight
duration is 43~809 seconds and that on 21st March
at 00 h 01 it becomes suddenly 44~048 seconds,
The daylight duration is a continuous function.
And since it varies by \deltalight{} seconds in
24 hours, it varies by 60 seconds in 6 hours.
This gives:
\vspace{2mm}
\begin{tabular}{|l|c|c|}
\hline
20~mars, noon & 43~809 & 12~h 10~mn 9~s \\
\hline
20~mars, 18~h & 43~869 & 12~h 11~mn 9~s \\
\hline
21~mars, 6~h & 43~988 & 12~h 13~mn 8~s \\
\hline
21~mars, noon & 44~048 & 12~h 14~mn 8~s \\
\hline
21~mars, 18~h & 44~108 & 12~h 15~mn 8~s \\
\hline
22~mars, 6~h & 44~225 & 12~h 17~mn 5~s \\
\hline
22~mars, noon & 44~285 & 12~h 18~mn 5~s \\
\hline
\end{tabular}
\vspace{2mm}
So, on 21st March, sunrise occurs 6 h 6 mn 34 s
before solar noon and sunset occurs
6 h 7 mn 34 s seconds after solar noon.
From this, we infer that solar noon really occurs
at 12 h 7 mn 24 s instead of 12 h 7 mn 54 s
as printed in the table above.
The difference between solar noon and the
middle of the daylight is proportional both to the
daylight variation (maximum at the equinoxes)
and to the daylight duration (maximum at the summer
solstice). So the maximum difference occurs
around 19th April, when the daylight variation
is still approximately equal to its maximum value
and when the daylight have notably increased since
the equinox.
\vspace{2mm}
\riseandset{20110418}{1}{3}{1}{20110419}
\vspace{2mm}
On this date, at noon, the daylight lasts 50853 seconds
(that is, 14 h 7 mn 33 s) and it variation is \deltalight{} seconds.
So, at sunrise, the daylight is shorter by
\( \frac{228 \times 7}{24} = 66\) seconds and at sunset it is longer
by 66 seconds likewise. The morning lasts
\( \frac{50853 - 66}{2} = 25393 \) seconds and the afternoon lasts \( \frac{50853 + 66}{2} = 25459 \) seconds.
The end result is that solar noon occurs at 11:59:18
while the middle of daylight occurs at \daynoonhhmmss{}.
Does this logical and computation error invalidate
the reasoning from the previous section? No, because
as you can see, the result is an error no longer
than 33 seconds between solar noon and the
middle of the daylight. This is still much less
than the difference between solar noon and mean noon,
which can nearly reach 17 minutes.
%\vspace{2mm}
%\riseandset{20120101}{7}{52}{1}{20110419}
%\vspace{2mm}
In addition, the computation error is nearly zero
at the winter solstice, since the daylight variation
itself is nearly zero. Therefore, in the December table,
the value printed for the solar noon is pretty much
the proper one.
\section{Solar Noon Variation}
%\vspace{2mm}
%\riseandset{20121216}{1}{15}{1}{20121225}
%\vspace{2mm}
The problem is now to understand why the solar noon
varies from one day to the next, in some cases with
a 30-second daily variation.
\subsection{Reference Case}
For the movements of Earth around itself and around
the sun, let us use the following simplificatons.
\begin{enumerate}
\item The year lasts exacty 360 days, instead of
365.25 and some.
\item Earth's orbit around the sun is a perfect circle.
\item The ecliptical plane of Earth's orbit is the same as
the equatorial plane. In other words, the axis of Earth's
spin is parallel to the axis of Earth revolution around the
sun.
\item We do not take into account the big scale variation,
such as the variation of the angle between the equatorial plane
and the ecliptical plane, or the precession of equinoxes.
\item We do not take into account the influence of other celestial
bodies: the Moon, Jupiter, etc. With its mass
\directlua{affsci(\solarmass)} kg,
the sun applies a \directlua{force(\solarmass,\solardist)} N
to the Earth, while the Moon's attraction is
only \directlua{force(\lunarmass,\lunardist)} N
and Jupiter applies a
\directlua{force(\jupitermass,\jupiterdist)} N attraction.
So we can ignore the influence of other celestial bodies
and pay attention only to the Sun attraction.
\end{enumerate}
The first hypothesis and the last two ones are here only to
simplify the computation and they will stay in effect for
the duration of the whole discussion. The second and third
hypothesis will be removed in turn to explain why the
solar noon does not coincidate with the mean noon.
If all five simplifications are in effect, Earth turns around
the sun in 360 days with a constant speed. So the orbital
movement is 1 degree per day. If we temporarily use a
set of coordinates centered on earth and using the
``fixed stars'', the sun moves one degree by day
with respect to the ``fixed stars''. To allow for this
1 degree per day movement and to have the sun at the
zenith at noon, Earth's rotation around its
axis is 361 degrees per 24 hours. Therefore,
on D+90 Earth has rotated for 90 turns and $\frac{1}{4}$,
on D+180 Earth has rotated for 180 turns and $\frac{1}{2}$
and on D+270 Earth has rotated for 270 turns and $\frac{3}{4}$.
See the picture below, which reverts to an heliocentric set of
coordinates.
\begin{mplibcode}
beginfig(1);
ua = 100;
z0 = (ua,0);
z90 = (0,ua);
z180 = (-ua,0);
z270 = (0,-ua);
draw z0{up} .. z90 .. z180 .. z270 .. z0;
rayon = 5;
tiret = 2;
for i = 0 step 90 until 270 :
% cercle de la Terre
draw (x[i] + rayon, y[i]) .. (x[i], y[i] + rayon) .. (x[i] - rayon, y[i]) .. (x[i], y[i] - rayon) .. cycle;
% repère pour le Soleil au méridien
draw (x[i], y[i]) + (rayon, 0) rotated (i + 180) -- (x[i], y[i]) + (rayon + tiret, 0) rotated (i + 180);
endfor;
% soleil
draw (rayon, 0) .. (0, rayon) .. (-rayon, 0) .. (0, - rayon) .. (rayon, 0);
ecart = rayon + 5;
drawarrow ( x90 - ecart, y90) {down} .. {right} ( x90, y90 - ecart);
drawarrow (x180 - ecart, y180) .. (x180, y180 - ecart) .. (x180 + ecart, y180);
drawarrow (x270 - ecart, y270) .. (x270, y270 - ecart) .. (x270 + ecart, y270) .. (x270, y270 + ecart);
label.rt ("D+0", (x0 + rayon, y0));
label.top("D+90", (x90, y90 + rayon));
label.lft("D+180", (x180 - rayon - ecart, y180));
label.bot("D+270", (x270, y270 - rayon - ecart));
label.bot("Sun", (0, 0 - rayon));
endfig;
\end{mplibcode}
So, when Earth achieves a circular movement the plane of which
is the same as the equator's plane, the solar noon and the mean
noon occurs precisely at the same time.
\subsection{Kepler's Laws}
Kepler's first law tells us that Earth's orbit is an ellipse,
one focus of which is occupied by the solar system's
center of inertia, that is, with a good approximation, the sun.
Kepler's second law tells us that the Earth's speed along
its sun-focused ellipse is such that the area-speed of the
sun-Earth vector is a constant.
Kepler's third law does not bring anything interesting in the
discussion.
Let us see what this would give with an ellipse with
a high eccentricity (0.5).
\begin{mplibcode}
beginfig(1);
ua = 100;
ub = 50 * sqrt(3);
z0 = (ua,0);
z61 = (0,ub);
z90 = (ua * cosd(116), ub * sind(116));
z180 = (-ua,0);
z270 = (x90, - y90);
z299 = (0,-ub);
draw z0{up} .. z61 .. z180 .. z299 .. z0;
rayon = 5;
tiret = 2;
for i = 0, 61, 90, 180, 270, 299 :
% cercle de la Terre
draw (x[i] + rayon, y[i]) .. (x[i], y[i] + rayon) .. (x[i] - rayon, y[i]) .. (x[i], y[i] - rayon) .. cycle;
endfor;
% soleil
xs = ua / 2;
ys = 0;
draw (xs + rayon, ys) .. (xs, ys + rayon) .. (xs - rayon, ys) .. (xs, ys - rayon) .. cycle;
label.rt ("D+0", (x0 + rayon, y0));
label.urt ("D+61", (x61, y61 + rayon));
label.ulft("D+90", (x90, y90 + rayon));
label.lft ("D+180", (x180 - rayon, y180));
label.llft("D+270", (x270, y270 - rayon));
label.lrt ("D+299", (x299, y299 - rayon));
label.lrt ("Sun", (xs, ys - rayon));
for i = 0 step 90 until 270 :
draw (xs, ys) -- (x[i], y[i]);
endfor
endfig;
\end{mplibcode}
Since the sun is placed in one of the ellipse's foci, on the right of
the drawing, we have to shift the D+90 and D+270 points to the
left, so that the areas (Sun, D+0, D+90), (Sun, D+90, D+180),
(Sun, D+180, D+270) and (Sun, D+270, D+0) are equivalent.
So Earth reaches the end of the ellipse's small axis on D+61 instead
of D+90, and the other end on D+299 instead of D+270.
\begin{mplibcode}
beginfig(1);
ua = 100;
ub = 50 * sqrt(3);
z0 = (ua,0);
z61 = (0,ub);
z90 = (ua * cosd(116), ub * sind(116));
z180 = (-ua,0);
z270 = (x90, - y90);
z299 = (0,-ub);
draw z0{up} .. z61 .. z180 .. z299 .. z0;
rayon = 5;
tiret = 2;
for i = 0, 61, 90, 180, 270, 299 :
% cercle de la Terre
draw (x[i] + rayon, y[i]) .. (x[i], y[i] + rayon) .. (x[i] - rayon, y[i]) .. (x[i], y[i] - rayon) .. cycle;
% repère pour le Soleil au méridien
draw (x[i], y[i]) + (rayon, 0) rotated (i + 180) -- (x[i], y[i]) + (rayon + tiret, 0) rotated (i + 180);
endfor;
% soleil
xs = ua / 2;
ys = 0;
draw (xs + rayon, ys) .. (xs, ys + rayon) .. (xs - rayon, ys) .. (xs, ys - rayon) .. cycle;
ecart = rayon + 5;
drawarrow ( x61 - ecart, y61) {down} .. ( (x61, y61) + (ecart, 0) rotated 241);
drawarrow ( x90 - ecart, y90) {down} .. {right} ( x90, y90 - ecart);
drawarrow (x180 - ecart, y180) .. (x180, y180 - ecart) .. (x180 + ecart, y180);
drawarrow (x270 - ecart, y270) .. (x270, y270 - ecart) .. (x270 + ecart, y270) .. (x270, y270 + ecart);
drawarrow (x299 - ecart, y299) .. (x299, y299 - ecart) .. (x299 + ecart, y299) .. (x299, y299 + ecart) .. ( (x299, y299) + (ecart, 0) rotated 109);
label.rt ("D+0", (x0 + rayon, y0));
label.urt ("D+61", (x61, y61 + rayon));
label.ulft("D+90", (x90, y90 + rayon));
label.lft ("D+180", (x180 - rayon - ecart, y180));
label.llft("D+270", (x270, y270 - rayon - ecart));
label.lrt ("D+299", (x299, y299 - rayon - ecart));
label.bot ("Sun", (xs, ys - rayon));
endfig;
\end{mplibcode}
On day D+61 at mean noon, Earth has rotated 61 turns plus 61 degrees,
but it does not aim at the sun. It must rotate an additional 59 degrees
to aim at the sun and reach solar noon. Likewise, on day D+90 at mean
noon, Earth has rotated 90 turns plus 90 degrees and has to rotate
an additional 46 degrees to reach solar noon.
On the other side (literally), on day D+270, the solar noon occurs before
the mean noon: the solar noon occurs after 270 turns plus 224 degrees
and the mean noon occurs after 270 turns plus 270 degrees, that is,
46 degrees after the solar noon.
\begin{mplibcode}
beginfig(1);
rayon = 20;
rayonf = 25;
pair meannoon, solarnoon;
z61 = (0, 0);
draw (z61 + (rayon, 0)) .. (z61 + (0, rayon)) .. (z61 + (-rayon, 0)) .. (z61 + (0, -rayon)) .. cycle;
label.top("D+61", z61 + (0, rayon));
meannoon := z61 + (rayonf, 0) rotated 241;
solarnoon := z61 + (rayonf, 0) rotated 300;
draw (z61 + (rayon, 0) rotated 241) -- meannoon;
draw (z61 + (rayon, 0) rotated 300) -- solarnoon;
label.llft("Mean noon", meannoon);
label.lrt ("Solar noon", solarnoon);
drawarrow (z61 - (rayonf, 0)) {down} .. meannoon;
drawarrow meannoon { dir 331 } .. { dir 30} solarnoon;
z90 = (100, 0);
draw (z90 + (rayon, 0)) .. (z90 + (0, rayon)) .. (z90 + (-rayon, 0)) .. (z90 + (0, -rayon)) .. cycle;
label.top("D+90", z90 + (0, rayon));
meannoon := z90 + (rayonf, 0) rotated 270;
solarnoon := z90 + (rayonf, 0) rotated 314;
draw (z90 + (rayon, 0) rotated 314) -- solarnoon;
draw (z90 + (rayon, 0) rotated 270) -- meannoon;
label.bot ("Mean noon", meannoon);
label.lrt ("Solar noon", solarnoon);
drawarrow (z90 - (rayonf, 0)) {down} .. meannoon;
drawarrow meannoon { dir 0 } .. { dir 44 } solarnoon;
z270 = (200, 0);
draw (z270 + (rayon, 0)) .. (z270 + (0, rayon)) .. (z270 + (-rayon, 0)) .. (z270 + (0, -rayon)) .. cycle;
label.top("D+270", z270 + (0, rayonf + 10));
solarnoon := z270 + (rayonf, 0) rotated 44;
meannoon := z270 + (rayonf, 0) rotated 90;
draw (z270 + (rayon, 0) rotated 44) -- solarnoon;
draw (z270 + (rayon, 0) rotated 90) -- meannoon;
label.lft("Mean noon", meannoon);
label.rt ("Solar noon", solarnoon);
drawarrow (z270 - (rayonf, 0)) {down} .. (z270 - (0, rayonf)) .. (z270 + (rayonf, 0)) .. solarnoon;
drawarrow solarnoon { dir 134 } .. { dir 180} meannoon;
z299 = (350, 0);
draw (z299 + (rayon, 0)) .. (z299 + (0, rayon)) .. (z299 + (-rayon, 0)) .. (z299 + (0, -rayon)) .. cycle;
label.top("D+299", z299 + (0, rayonf + 10));
solarnoon := z299 + (rayonf, 0) rotated 63;
meannoon := z299 + (rayonf, 0) rotated 119;
draw (z299 + (rayon, 0) rotated 63) -- solarnoon;
draw (z299 + (rayon, 0) rotated 119) -- meannoon;
label.urt ("Solar noon", solarnoon);
label.ulft("Mean noon", meannoon);
%drawarrow (z299 - (rayonf, 0)) {down} .. (z299 - (0, rayonf)) .. (z299 + (rayonf, 0)) .. solarnoon;
drawarrow (z299 - (rayonf, 0)) {down} .. (z299 - (0, rayonf)) .. solarnoon;
drawarrow solarnoon { dir 153 } .. { dir 209 } meannoon;
endfig;
\end{mplibcode}
In these examples, the 46- and 59-degree angles are equivalent
to a 3- and 4-hour delay respectively. This is very much greater
than the delays that happen on the real world Earth. But at the
same time, the real world orbit's eccentricity is only 0.02
while the description above posits a 0.5 eccentricity.
\subsection{Influence of the Orbit Slope}
The second simplification is reinstated, while the third simplification
is removed. The discussion is a bit harder to follow, because it
requires to think in 3-D, which is not convenient on
a 2-D sheet of paper.
Let us start from the five simplifications are in effect. Then,
we rotate the orbital plane \textit{while keeping
the equatorial plane parallel to itself}, then we project
the new orbit orthogonally on the former orbit's plane,
\textit{while still keeping the equatorial plane parallel
to itself}.
\begin{mplibcode}
beginfig(1);
ua = 100;
rayon = 5;
tiret = 2;
% Terre vue de profil
def terreprofil(expr z) =
fill z + (rayon, 0) .. z + (0, rayon) .. z - (rayon, 0) .. z - (0, rayon) .. cycle;
draw z - (rayon + tiret, 0) -- z + (rayon + tiret, 0);
enddef;
% transformation vue de profil
xprof = -200;
draw (xprof, ua) -- (xprof, -ua);
draw (xprof, 0) + (0, ua) rotated 60 -- (xprof, 0) + (0, -ua) rotated 60;
terreprofil( (xprof, ua ) );
terreprofil( (xprof, 0 ) + (0, ua) rotated 60 );
terreprofil( (xprof, ua / 2 ) );
terreprofil( (xprof, - ua ) );
terreprofil( (xprof, 0 ) - (0, ua) rotated 60 );
terreprofil( (xprof, - ua / 2 ) );
drawarrow (xprof - rayon - 3 * tiret, ua) {left} .. {dir 240} ((xprof, 0 ) + (0 + rayon + 3 * tiret, ua + tiret) rotated 60);
drawarrow (xprof + rayon + 3 * tiret, 0 ) + (0, ua) rotated 60 -- (xprof - rayon - 3 * tiret, ua / 2);
drawarrow (xprof + rayon + 3 * tiret, - ua) {right} .. {dir 60} ((xprof, 0 ) - (0 + rayon + 3 * tiret, ua + tiret) rotated 60);
drawarrow (xprof - rayon - 3 * tiret, 0 ) - (0, ua) rotated 60 -- (xprof + rayon + 3 * tiret, - ua / 2);
% transformation vue de face
z0 = (ua,0);
z90 = (0,ua);
z180 = (-ua,0);
z270 = (0,-ua);
pair zf[];
path orbite;
zf90 = (0, ua / 2);
zf270 = (0, - ua / 2);
orbite = z0{up} .. z90 .. z180 .. z270 .. z0;
draw orbite;
draw orbite yscaled 0.5;
for i = 0 step 90 until 270 :
% cercle de la Terre
draw (x[i] + rayon, y[i]) .. (x[i], y[i] + rayon) .. (x[i] - rayon, y[i]) .. (x[i], y[i] - rayon) .. cycle;
% repère pour le Soleil au méridien
draw (x[i], y[i]) + (rayon, 0) rotated (i + 180) -- (x[i], y[i]) + (rayon + tiret, 0) rotated (i + 180);
endfor;
% soleil
draw (rayon, 0) .. (0, rayon) .. (-rayon, 0) .. (0, - rayon) .. (rayon, 0);
% Nouveau J+90
draw ((rayon, 0) .. (0, rayon) .. (- rayon, 0) .. (0, - rayon) .. cycle) shifted zf90;
draw ((0, - rayon) -- (0, - rayon - tiret)) shifted (x90, y90 / 2);
drawarrow (z90 - (0, 2 * rayon)) -- (zf90 + (0, 2 * rayon));
% Nouveau J+270
draw ((rayon, 0) .. (0, rayon) .. (- rayon, 0) .. (0, - rayon) .. cycle) shifted zf270;
draw ((0, + rayon) -- (0, + rayon + tiret)) shifted zf270;
drawarrow (z270 + (0, 2 * rayon)) -- (zf270 - (0, 2 * rayon));
ecart := rayon + 5;
drawarrow ( x90 - ecart, y90) {down} .. {right} ( x90, y90 - ecart);
drawarrow (x180 - ecart, y180) .. (x180, y180 - ecart) .. (x180 + ecart, y180);
drawarrow (x270 - ecart, y270) .. (x270, y270 - ecart) .. (x270 + ecart, y270) .. (x270, y270 + ecart);
label.rt ("D+0", (x0 + rayon, y0));
label.top("D+90", (x90, y90 + rayon));
label.lft("D+180", (x180 - rayon - ecart, y180));
label.bot("D+270", (x270, y270 - rayon - ecart));
label.bot("Sun", (0, 0 - rayon));
endfig;
\end{mplibcode}
The end result is that the orbit's circle is contracted along
the vertical axis, which gives an ellipse. All the while,
Earth's rotation around its pole axis stays the same,
since the pole-to-pole axis was constantly kept parallel to
itself.
Since we use an exaggerated slope of 60 degrees, the circle is
contracted by half. With the real world 23-degree slope,
the contraction would be only 8\%.
Let us now consider the days D+45, D+135, D+225 and D+315.
\begin{mplibcode}
beginfig(1);
ua = 100;
rayon = 5;
tiret = 2;
% transformation vue de face
z0 = ( ua, 0);
z90 = ( 0, ua);
z180 = (-ua, 0);
z270 = ( 0,-ua);
path orbite;
orbite = z0{up} .. z90 .. z180 .. z270 .. z0;
z45 = point 0.5 of orbite;
z135 = point 1.5 of orbite;
z225 = point 2.5 of orbite;
z315 = point 3.5 of orbite;
pair zf[];
zf90 = (0, ua / 2);
xf90 = 0;
yf90 = ua / 2;
zf270 = (0, - ua / 2);
xf270 = 0;
yf270 = - ua / 2;
zf45 = z45 yscaled 0.5;
zf135 = z135 yscaled 0.5;
zf225 = z225 yscaled 0.5;
zf315 = z315 yscaled 0.5;
draw orbite;
draw orbite yscaled 0.5;
for i = 0 step 45 until 315 :
% cercle de la Terre
draw (x[i] + rayon, y[i]) .. (x[i], y[i] + rayon) .. (x[i] - rayon, y[i]) .. (x[i], y[i] - rayon) .. cycle;
% repère pour le Soleil au méridien
draw (x[i], y[i]) + (rayon, 0) rotated (i + 180) -- (x[i], y[i]) + (rayon + tiret, 0) rotated (i + 180);
endfor;
% soleil
draw (rayon, 0) .. (0, rayon) .. (-rayon, 0) .. (0, - rayon) .. (rayon, 0);
% Nouveau J+45
draw ((rayon, 0) .. (0, rayon) .. (- rayon, 0) .. (0, - rayon) .. cycle) shifted zf45;
draw ((- rayon, 0) -- (- rayon - tiret, 0)) rotated 45 shifted (x45, y45 / 2);
drawarrow (z45 - (0, 2 * rayon)) -- (zf45 + (0, 2 * rayon));
% Nouveau J+90
draw ((rayon, 0) .. (0, rayon) .. (- rayon, 0) .. (0, - rayon) .. cycle) shifted zf90;
draw ((0, - rayon) -- (0, - rayon - tiret)) shifted (x90, y90 / 2);
drawarrow (z90 - (0, 2 * rayon)) -- (zf90 + (0, 2 * rayon));
% Nouveau J+135
draw ((rayon, 0) .. (0, rayon) .. (- rayon, 0) .. (0, - rayon) .. cycle) shifted zf135;
draw ((- rayon, 0) -- (- rayon - tiret, 0)) rotated 135 shifted (x135, y135 / 2);
drawarrow (z135 - (0, 2 * rayon)) -- (zf135 + (0, 2 * rayon));
% Nouveau J+225
draw ((rayon, 0) .. (0, rayon) .. (- rayon, 0) .. (0, - rayon) .. cycle) shifted zf225;
draw ((- rayon, 0) -- (- rayon - tiret, 0)) rotated 225 shifted (x225, y225 / 2);
drawarrow (z225 + (0, 2 * rayon)) -- (zf225 - (0, 2 * rayon));
% Nouveau J+270
draw ((rayon, 0) .. (0, rayon) .. (- rayon, 0) .. (0, - rayon) .. cycle) shifted zf270;
draw ((0, + rayon) -- (0, + rayon + tiret)) shifted zf270;
drawarrow (z270 + (0, 2 * rayon)) -- (zf270 - (0, 2 * rayon));
% Nouveau J+315
draw ((rayon, 0) .. (0, rayon) .. (- rayon, 0) .. (0, - rayon) .. cycle) shifted zf315;
draw ((- rayon, 0) -- (- rayon - tiret, 0)) rotated 315 shifted (x315, y315 / 2);
drawarrow (z315 + (0, 2 * rayon)) -- (zf315 - (0, 2 * rayon));
ecart := rayon + 5;
%drawarrow ( x90 - ecart, y90) {down} .. {right} ( x90, y90 - ecart);
%drawarrow ( xf90 - ecart, yf90) {down} .. {right} ( xf90, yf90 - ecart);
%drawarrow (x180 - ecart, y180) .. (x180, y180 - ecart) .. (x180 + ecart, y180);
%drawarrow (x270 - ecart, y270 ) .. (x270 , y270 - ecart) .. (x270 + ecart, y270 ) .. (x270 , y270 + ecart);
%drawarrow (xf270 - ecart, yf270) .. (xf270, yf270 - ecart) .. (xf270 + ecart, yf270) .. (xf270, yf270 + ecart);
label.rt ("D+0", (x0 + rayon, y0));
label.rt ("D+45", (x45 + rayon, y45));
label.top("D+90", (x90, y90 + rayon));
label.lft("D+135", (x135 - rayon - ecart, y135));
label.lft("D+180", (x180 - rayon - ecart, y180));
label.lft("D+225", (x225 - rayon - ecart, y225));
label.bot("D+270", (x270, y270 - rayon - ecart));
label.rt ("D+315", (x315 + rayon, y315));
label.bot("Sun", (0, 0 - rayon));
endfig;
\end{mplibcode}
With this transformation, we notice that mean noon and solar
noon occurs at the same time for D+0, D+90, D+180 and D+270. But
this is not the case with the other days, especially
D+45, D+135, D+225 and D+315.
\begin{mplibcode}
beginfig(1);
rayon = 20;
rayonf = 25;
pair meannoon, solarnoon;
z45 = (0, 0);
draw (z45 + (rayon, 0)) .. (z45 + (0, rayon)) .. (z45 + (-rayon, 0)) .. (z45 + (0, -rayon)) .. cycle;
label.top("D+45", z45 + (0, rayon));
meannoon := z45 + (rayonf, 0) rotated 225;