Skip to content
This repository has been archived by the owner on Sep 18, 2024. It is now read-only.

docs: update artifacts, lr, and results for tll experiment #599

Merged
merged 3 commits into from
Nov 8, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,9 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Docs

- Add documentation for `WandBLogger`. [#600](https://github.com/jina-ai/finetuner/pull/600)
- Change datasets and hyperparameters for ResNet experiment. ([#599](https://github.com/jina-ai/finetuner/pull/599))

- Add documentation for `WandBLogger`. ([#600](https://github.com/jina-ai/finetuner/pull/600))


## [0.6.4] - 2022-10-27
Expand Down
20 changes: 10 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -67,16 +67,16 @@ With Finetuner, one can easily uplift pre-trained models to be more performant a
<td rowspan="2">ResNet</td>
<td rowspan="2">Visual similarity search on <a href="https://sites.google.com/view/totally-looks-like-dataset">TLL</a></td>
<td>mAP</td>
<td>0.102</td>
<td>0.166</td>
<td><span style="color:green">62.7%</span></td>
<td>0.110</td>
<td>0.196</td>
<td><span style="color:green">78.2%</span></td>
<td rowspan="2"><p align=center><a href="https://colab.research.google.com/drive/1QuUTy3iVR-kTPljkwplKYaJ-NTCgPEc_?usp=sharing"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a></p></td>
</tr>
<tr>
<td>Recall</td>
<td>0.235</td>
<td>0.372</td>
<td><span style="color:green">58.3%</span></td>
<td>0.249</td>
<td>0.460</td>
<td><span style="color:green">84.7%</span></td>
</tr>
<tr>
<td rowspan="2">CLIP</td>
Expand All @@ -97,7 +97,7 @@ With Finetuner, one can easily uplift pre-trained models to be more performant a
</tbody>
</table>

<sub><sup>All metrics are evaluated on k@20 after training for 5 epochs using Adam optimizer with learning rates of 1e-7 for CLIP and 1e-5 for the other models.</sup></sub>
<sub><sup>All metrics are evaluated on k@20 after training for 5 epochs using Adam optimizer with learning rates of 1e-4 for ResNet, 1e-7 for CLIP and 1e-5 for the BERT models.</sup></sub>

<!-- start install-instruction -->

Expand Down Expand Up @@ -138,11 +138,11 @@ finetuner.login() # use finetuner.notebook_login() in Jupyter notebook/Google C
run = finetuner.fit(
model='resnet50',
run_name='resnet50-tll-run',
train_data='tll-train-da',
train_data='tll-train-data',
callbacks=[
EvaluationCallback(
query_data='tll-test-query-da',
index_data='tll-test-index-da',
query_data='tll-test-query-data',
index_data='tll-test-index-data',
)
],
)
Expand Down
34 changes: 17 additions & 17 deletions docs/notebooks/image_to_image.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -68,7 +68,7 @@
"## Data\n",
"\n",
"Our journey starts locally. We have to prepare the data and push it to the Jina AI Cloud and Finetuner will be able to get the dataset by its name. For this example,\n",
"we already prepared the data, and we'll provide the names of training data (`tll-train-da`) directly to Finetuner.\n",
"we already prepared the data, and we'll provide the names of training data (`tll-train-data`) directly to Finetuner.\n",
"\n",
"```{important} \n",
"We don't require you to push data to the Jina AI Cloud by yourself. Instead of a name, you can provide a `DocumentArray` and Finetuner will do the job for you.\n",
Expand Down Expand Up @@ -99,9 +99,9 @@
{
"cell_type": "code",
"source": [
"train_data = DocumentArray.pull('tll-train-da', show_progress=True)\n",
"query_data = DocumentArray.pull('tll-test-query-da', show_progress=True)\n",
"index_data = DocumentArray.pull('tll-test-index-da', show_progress=True)\n",
"train_data = DocumentArray.pull('tll-train-data', show_progress=True)\n",
"query_data = DocumentArray.pull('tll-test-query-data', show_progress=True)\n",
"index_data = DocumentArray.pull('tll-test-index-data', show_progress=True)\n",
"\n",
"train_data.summary()"
],
Expand Down Expand Up @@ -142,15 +142,15 @@
"\n",
"run = finetuner.fit(\n",
" model='resnet50',\n",
" train_data='tll-train-da',\n",
" train_data='tll-train-data',\n",
" batch_size=128,\n",
" epochs=5,\n",
" learning_rate=1e-5,\n",
" learning_rate=1e-4,\n",
" device='cuda',\n",
" callbacks=[\n",
" EvaluationCallback(\n",
" query_data='tll-test-query-da',\n",
" index_data='tll-test-index-da',\n",
" query_data='tll-test-query-data',\n",
" index_data='tll-test-index-data',\n",
" )\n",
" ],\n",
")"
Expand Down Expand Up @@ -229,15 +229,15 @@
"\n",
"```bash\n",
" Training [5/5] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 76/76 0:00:00 0:03:15 • loss: 0.003\n",
"[16:39:13] DEBUG Metric: 'model_average_precision' Value: 0.16603 __main__.py:202\n",
" DEBUG Metric: 'model_dcg_at_k' Value: 0.23632 __main__.py:202\n",
" DEBUG Metric: 'model_f1_score_at_k' Value: 0.03544 __main__.py:202\n",
" DEBUG Metric: 'model_hit_at_k' Value: 0.37209 __main__.py:202\n",
" DEBUG Metric: 'model_ndcg_at_k' Value: 0.23632 __main__.py:202\n",
" DEBUG Metric: 'model_precision_at_k' Value: 0.01860 __main__.py:202\n",
" DEBUG Metric: 'model_r_precision' Value: 0.16603 __main__.py:202\n",
" DEBUG Metric: 'model_recall_at_k' Value: 0.37209 __main__.py:202\n",
" DEBUG Metric: 'model_reciprocal_rank' Value: 0.16603 __main__.py:202\n",
"[16:39:13] DEBUG Metric: 'model_average_precision' Value: 0.19598 __main__.py:202\n",
" DEBUG Metric: 'model_dcg_at_k' Value: 0.28571 __main__.py:202\n",
" DEBUG Metric: 'model_f1_score_at_k' Value: 0.04382 __main__.py:202\n",
" DEBUG Metric: 'model_hit_at_k' Value: 0.46013 __main__.py:202\n",
" DEBUG Metric: 'model_ndcg_at_k' Value: 0.28571 __main__.py:202\n",
" DEBUG Metric: 'model_precision_at_k' Value: 0.02301 __main__.py:202\n",
" DEBUG Metric: 'model_r_precision' Value: 0.19598 __main__.py:202\n",
" DEBUG Metric: 'model_recall_at_k' Value: 0.46013 __main__.py:202\n",
" DEBUG Metric: 'model_reciprocal_rank' Value: 0.19598 __main__.py:202\n",
" INFO Done ✨ __main__.py:204\n",
" INFO Saving fine-tuned models ... __main__.py:207\n",
" INFO Saving model 'model' in /usr/src/app/tuned-models/model ... __main__.py:218\n",
Expand Down
34 changes: 17 additions & 17 deletions docs/notebooks/image_to_image.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ After fine-tuning, the embeddings of positive pairs are expected to be pulled cl
## Data

Our journey starts locally. We have to prepare the data and push it to the Jina AI Cloud and Finetuner will be able to get the dataset by its name. For this example,
we already prepared the data, and we'll provide the names of training data (`tll-train-da`) directly to Finetuner.
we already prepared the data, and we'll provide the names of training data (`tll-train-data`) directly to Finetuner.

```{important}
We don't require you to push data to the Jina AI Cloud by yourself. Instead of a name, you can provide a `DocumentArray` and Finetuner will do the job for you.
Expand All @@ -63,9 +63,9 @@ finetuner.notebook_login(force=True)
```

```python id="ONpXDwFBsqQS"
train_data = DocumentArray.pull('tll-train-da', show_progress=True)
query_data = DocumentArray.pull('tll-test-query-da', show_progress=True)
index_data = DocumentArray.pull('tll-test-index-da', show_progress=True)
train_data = DocumentArray.pull('tll-train-data', show_progress=True)
query_data = DocumentArray.pull('tll-test-query-data', show_progress=True)
index_data = DocumentArray.pull('tll-test-index-data', show_progress=True)

train_data.summary()
```
Expand All @@ -89,15 +89,15 @@ from finetuner.callback import EvaluationCallback

run = finetuner.fit(
model='resnet50',
train_data='tll-train-da',
train_data='tll-train-data',
batch_size=128,
epochs=5,
learning_rate=1e-5,
learning_rate=1e-4,
device='cuda',
callbacks=[
EvaluationCallback(
query_data='tll-test-query-da',
index_data='tll-test-index-da',
query_data='tll-test-query-data',
index_data='tll-test-index-data',
)
],
)
Expand Down Expand Up @@ -147,15 +147,15 @@ What you can do for now is to call `run.logs()` in the end of the run and see ev

```bash
Training [5/5] ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 76/76 0:00:00 0:03:15 • loss: 0.003
[16:39:13] DEBUG Metric: 'model_average_precision' Value: 0.16603 __main__.py:202
DEBUG Metric: 'model_dcg_at_k' Value: 0.23632 __main__.py:202
DEBUG Metric: 'model_f1_score_at_k' Value: 0.03544 __main__.py:202
DEBUG Metric: 'model_hit_at_k' Value: 0.37209 __main__.py:202
DEBUG Metric: 'model_ndcg_at_k' Value: 0.23632 __main__.py:202
DEBUG Metric: 'model_precision_at_k' Value: 0.01860 __main__.py:202
DEBUG Metric: 'model_r_precision' Value: 0.16603 __main__.py:202
DEBUG Metric: 'model_recall_at_k' Value: 0.37209 __main__.py:202
DEBUG Metric: 'model_reciprocal_rank' Value: 0.16603 __main__.py:202
[16:39:13] DEBUG Metric: 'model_average_precision' Value: 0.19598 __main__.py:202
DEBUG Metric: 'model_dcg_at_k' Value: 0.28571 __main__.py:202
DEBUG Metric: 'model_f1_score_at_k' Value: 0.04382 __main__.py:202
DEBUG Metric: 'model_hit_at_k' Value: 0.46013 __main__.py:202
DEBUG Metric: 'model_ndcg_at_k' Value: 0.28571 __main__.py:202
DEBUG Metric: 'model_precision_at_k' Value: 0.02301 __main__.py:202
DEBUG Metric: 'model_r_precision' Value: 0.19598 __main__.py:202
DEBUG Metric: 'model_recall_at_k' Value: 0.46013 __main__.py:202
DEBUG Metric: 'model_reciprocal_rank' Value: 0.19598 __main__.py:202
INFO Done ✨ __main__.py:204
INFO Saving fine-tuned models ... __main__.py:207
INFO Saving model 'model' in /usr/src/app/tuned-models/model ... __main__.py:218
Expand Down