Skip to content


Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?

Latest commit


Git stats


Failed to load latest commit information.
Latest commit message
Commit time

jtd: JSON Validation for Golang

GoDoc Badge

This package implements JSON Typedef validation for Golang. If you're trying to do JSON Typedef code generation, see "Generating Golang from JSON Typedef Schemas" in the JSON Typedef docs.

jtd is a Golang implementation of JSON Type Definition, a schema language for JSON. jtd primarily gives you two things:

  1. Validating input data against JSON Typedef schemas.
  2. A Golang representation of JSON Typedef schemas.

With this package, you can add JSON Typedef-powered validation to your application, or you can build your own tooling on top of JSON Type Definition.


If you're using Go modules, install this package by running:

go get

Although the package's name ends in json-typedef-go, it exposes a package called jtd. In other words, this:

import ""

Is the same thing as:

import jtd ""


Detailed API documentation is available online at:

For more high-level documentation about JSON Typedef in general, or JSON Typedef in combination with Golang in particular, see:

Basic Usage

For a more detailed tutorial and guidance on how to integrate jtd in your application, see "Validating JSON in Golang with JSON Typedef" in the JSON Typedef docs.

Here's an example of how you can use this package to validate JSON data against a JSON Typedef schema:

package main

import (

	jtd ""

func main() {
	schemaJSON := `{
		"properties": {
			"name": { "type": "string" },
			"age": { "type": "uint32" },
			"phones": {
				"elements": { "type": "string" }

	var schema jtd.Schema
	json.Unmarshal([]byte(schemaJSON), &schema)

	// jtd.Validate returns an array of validation errors. If there were no
	// problems with the input, it returns an empty array.

	// This input is perfect, so we'll get back an empty list of validation
	// errors.
	okJSON := `{
		"name": "John Doe",
		"age": 43,
		"phones": ["+44 1234567", "+44 2345678"]

	var ok interface{}
	json.Unmarshal([]byte(okJSON), &ok)

	// Outputs:
	// [] <nil>
	fmt.Println(jtd.Validate(schema, ok))

	// This next input has three problems with it:
	// 1. It's missing "name", which is a required property.
	// 2. "age" is a string, but it should be an integer.
	// 3. "phones[1]" is a number, but it should be a string.
	// Each of those errors corresponds to one of the errors returned by
	// jtd.Validate.
	badJSON := `{
		"age": "43",
		"phones": ["+44 1234567", 442345678]

	var bad interface{}
	json.Unmarshal([]byte(badJSON), &bad)

	// Outputs something like (order may change):
	// []jtd.ValidateError{
	// 	jtd.ValidateError{
	// 		InstancePath: []string{},
	// 		SchemaPath: []string{"properties", "name"}
	// 	},
	// 	jtd.ValidateError{
	// 		InstancePath: []string{"age"},
	// 		SchemaPath: []string{"properties", "age", "type"}
	// 	},
	// 	jtd.ValidateError{
	// 		InstancePath: []string{"phones", "1"},
	// 		SchemaPath: []string{"properties", "phones", "elements", "type"}
	// 	}
	// }
	errs, _ := jtd.Validate(schema, bad)
	fmt.Printf("%#v\n", errs)

Advanced Usage: Limiting Errors Returned

By default, jtd.Validate returns every error it finds. If you just care about whether there are any errors at all, or if you can't show more than some number of errors, then you can get better performance out of jtd.Validate using the WithMaxErrors option.

For example, taking the same example from before, but limiting it to 1 error, we get:

// []jtd.ValidateError{
// 	jtd.ValidateError{
// 		InstancePath: []string{},
// 		SchemaPath: []string{"properties", "name"}
// 	}
// }
errs, _ := jtd.Validate(schema, bad, jtd.WithMaxErrors(1))
fmt.Printf("%#v\n", errs)

Advanced Usage: Handling Untrusted Schemas

If you want to run jtd against a schema that you don't trust, then you should:

  1. Ensure the schema is well-formed, using the Validate method on Schema, which validates things like making sure all refs have corresponding definitions.

  2. Call jtd.Validate with the WithMaxDepth option. JSON Typedef lets you write recursive schemas -- if you're evaluating against untrusted schemas, you might go into an infinite loop when evaluating against a malicious input, such as this one:

      "ref": "loop",
      "definitions": {
        "loop": {
          "ref": "loop"

    The MaxDepth option tells jtd.Validate how many refs to follow recursively before giving up and throwing jtd.ErrMaxDepthExceeded.

Here's an example of how you can use jtd to evaluate data against an untrusted schema:

func validateUntrusted(schema jtd.Schema, instance interface{}) (bool, error) {
	if err := schema.Validate(); err != nil {
		return false, err

	// You should tune WithMaxDepth to be high enough that most legitimate schemas
	// evaluate without errors, but low enough that an attacker cannot cause a
	// denial of service attack.
	errs, err := jtd.Validate(schema, instance, jtd.WithMaxDepth(32))
	if err != nil {
		return false, err

	return len(errs) == 0, nil

// Returns true
validateUntrusted(jtd.Schema{Type: jtd.TypeString}, "foo")

// Returns false
validateUntrusted(jtd.Schema{Type: jtd.TypeString}, nil)

// Returns jtd.ErrInvalidType
validateUntrusted(jtd.Schema{Type: "nonsense"}, nil)

// Returns jtd.ErrMaxDepthExceeded
loop := "loop"
	Definitions: map[string]jtd.Schema{
		"loop": jtd.Schema{
			Ref: &loop,
	Ref: &loop,
}, nil)


A Go implementation of JSON Type Definition







No releases published


No packages published