Skip to content

Commit

Permalink
Added LSTM(P,C) layers. Moved the code to conform to the latest package
Browse files Browse the repository at this point in the history
structure and many more changes. Successfully generates an LSTM model.
  • Loading branch information
vijayaditya committed Nov 17, 2016
1 parent d88856f commit dc26602
Show file tree
Hide file tree
Showing 16 changed files with 1,271 additions and 317 deletions.
235 changes: 235 additions & 0 deletions egs/swbd/s5c/local/chain/run_xlstm.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
#!/bin/bash

# 6i is based on run_lstm_6h.sh, but changing the HMM context from triphone to left biphone.

# System 6h 6i
# WER on train_dev(tg) 14.73 15.02
# WER on train_dev(fg) 14.05 14.17
# WER on eval2000(tg) 17.0 16.8
# WER on eval2000(fg) 15.8 15.6
# Final train prob -0.0955829 -0.0842581
# Final valid prob -0.11419 -0.101598
# Final train prob (xent) -2.28923 -1.78616
# Final valid prob (xent) -2.25641 -1.79062
# Real-time factor 3.338339 3.131303

set -ex

# configs for 'chain'
stage=12
train_stage=-10
get_egs_stage=-10
speed_perturb=true
dir=exp/chain/lstm_6i_xconf # Note: _sp will get added to this if $speed_perturb == true.
decode_iter=
decode_dir_affix=

# training options
leftmost_questions_truncate=-1
chunk_width=150
chunk_left_context=40
chunk_right_context=0
xent_regularize=0.025
self_repair_scale=0.00001
label_delay=5
# decode options
extra_left_context=50
extra_right_context=0
frames_per_chunk=

remove_egs=false
common_egs_dir=

affix=
# End configuration section.
echo "$0 $@" # Print the command line for logging

. ./cmd.sh
. ./path.sh
. ./utils/parse_options.sh

if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already
# run those things.

suffix=
if [ "$speed_perturb" == "true" ]; then
suffix=_sp
fi

dir=$dir${affix:+_$affix}
if [ $label_delay -gt 0 ]; then dir=${dir}_ld$label_delay; fi
dir=${dir}$suffix
train_set=train_nodup$suffix
ali_dir=exp/tri4_ali_nodup$suffix
treedir=exp/chain/tri5_7d_tree$suffix
lang=data/lang_chain_2y


# if we are using the speed-perturbed data we need to generate
# alignments for it.
local/nnet3/run_ivector_common.sh --stage $stage \
--speed-perturb $speed_perturb \
--generate-alignments $speed_perturb || exit 1;


if [ $stage -le 9 ]; then
# Get the alignments as lattices (gives the CTC training more freedom).
# use the same num-jobs as the alignments
nj=$(cat exp/tri4_ali_nodup$suffix/num_jobs) || exit 1;
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \
data/lang exp/tri4 exp/tri4_lats_nodup$suffix
rm exp/tri4_lats_nodup$suffix/fsts.*.gz # save space
fi


if [ $stage -le 10 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi

if [ $stage -le 11 ]; then
# Build a tree using our new topology.
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--leftmost-questions-truncate $leftmost_questions_truncate \
--context-opts "--context-width=2 --central-position=1" \
--cmd "$train_cmd" 7000 data/$train_set $lang $ali_dir $treedir
fi

if [ $stage -le 12 ]; then
echo "$0: creating neural net configs using the xconfig parser";

num_targets=$(tree-info exp/chain/tri5_7d_tree_sp/tree |grep num-pdfs|awk '{print $2}')
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python)

mkdir -p $dir/configs
cat <<EOF > $dir/configs/network.xconfig
input dim=100 name=ivector
input dim=40 name=input
# please note that it is important to have input layer with the name=input
# as the layer immediately preceding the fixed-affine-layer to enable
# the use of short notation for the descriptor
fixed-affine-layer name=lda input=Append(-2,-1,0,1,2,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat';
# check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults
lstmp-layer name=lstm1 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3
lstmp-layer name=lstm2 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3
lstmp-layer name=lstm3 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3
## adding the layers for chain branch
relu-renorm-layer name=chain-prefinal input=lstm3 target-rms=0.5
affine-layer name=chain-final dim=$num_targets bias-stddev=0.0 param-stddev=0.0
output-layer name=output input=-$label_delay include-log-softmax=false
# adding the layers for xent branch
# This block prints the configs for a separate output that will be
# trained with a cross-entropy objective in the 'chain' models... this
# has the effect of regularizing the hidden parts of the model. we use
# 0.5 / args.xent_regularize as the learning rate factor- the factor of
# 1.0 / args.xent_regularize is suitable as it means the xent
# final-layer learns at a rate independent of the regularization
# constant; and the 0.5 was tuned so as to make the relative progress
# similar in the xent and regular final layers.
relu-renorm-layer name=xent-prefinal input=lstm3 target-rms=0.5
affine-layer name=xent-final dim=$num_targets bias-stddev=0.0 param-stddev=0.0 learning-rate-factor=$learning_rate_factor
output-layer name=output-xent input=-$label_delay
EOF

steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/
nnet3-init $dir/configs/ref.config $dir/ref.raw
fi

if [ $stage -le 13 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
fi

steps/nnet3/chain/train.py --stage $train_stage \
--cmd "$decode_cmd" \
--feat.online-ivector-dir exp/nnet3/ivectors_${train_set} \
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \
--chain.xent-regularize $xent_regularize \
--chain.leaky-hmm-coefficient 0.1 \
--chain.l2-regularize 0.00005 \
--chain.apply-deriv-weights false \
--chain.lm-opts="--num-extra-lm-states=2000" \
--chain.left-deriv-truncate 0 \
--trainer.num-chunk-per-minibatch 64 \
--trainer.frames-per-iter 1200000 \
--trainer.max-param-change 2.0 \
--trainer.num-epochs 4 \
--trainer.optimization.shrink-value 0.99 \
--trainer.optimization.num-jobs-initial 3 \
--trainer.optimization.num-jobs-final 16 \
--trainer.optimization.initial-effective-lrate 0.001 \
--trainer.optimization.final-effective-lrate 0.0001 \
--trainer.optimization.momentum 0.0 \
--egs.stage $get_egs_stage \
--egs.opts "--frames-overlap-per-eg 0" \
--egs.chunk-width $chunk_width \
--egs.chunk-left-context $chunk_left_context \
--egs.chunk-right-context $chunk_right_context \
--egs.dir "$common_egs_dir" \
--cleanup.remove-egs $remove_egs \
--feat-dir data/${train_set}_hires \
--tree-dir $treedir \
--lat-dir exp/tri4_lats_nodup$suffix \
--dir $dir || exit 1;
fi

if [ $stage -le 14 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --left-biphone --self-loop-scale 1.0 data/lang_sw1_tg $dir $dir/graph_sw1_tg
fi

decode_suff=sw1_tg
graph_dir=$dir/graph_sw1_tg
if [ $stage -le 15 ]; then
[ -z $extra_left_context ] && extra_left_context=$chunk_left_context;
[ -z $extra_right_context ] && extra_right_context=$chunk_right_context;
[ -z $frames_per_chunk ] && frames_per_chunk=$chunk_width;
iter_opts=
if [ ! -z $decode_iter ]; then
iter_opts=" --iter $decode_iter "
fi
for decode_set in train_dev eval2000; do
(
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--nj 50 --cmd "$decode_cmd" $iter_opts \
--extra-left-context $extra_left_context \
--extra-right-context $extra_right_context \
--frames-per-chunk "$frames_per_chunk" \
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \
$graph_dir data/${decode_set}_hires \
$dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_${decode_suff} || exit 1;
if $has_fisher; then
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \
$dir/decode_${decode_set}${decode_dir_affix:+_$decode_dir_affix}_sw1_{tg,fsh_fg} || exit 1;
fi
) &
done
fi
wait;
exit 0;
9 changes: 9 additions & 0 deletions egs/wsj/s5/steps/libs/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@


# Copyright 2016 Vimal Manohar
# Apache 2.0.

""" This package contains modules and subpackages used in kaldi scripts.
"""

__all__ = ["common"]
12 changes: 12 additions & 0 deletions egs/wsj/s5/steps/libs/nnet3/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@

# Copyright 2016 Johns Hopkins University (Dan Povey)
# 2016 Vimal Manohar
# 2016 Vijayaditya Peddinti
# 2016 Yiming Wang
# Apache 2.0.


# This module has the python functions which facilitate the use of nnet3 toolkit
# It has two sub-modules
# xconfig : Library for parsing high level description of neural networks
# train : Library for training scripts
30 changes: 30 additions & 0 deletions egs/wsj/s5/steps/libs/nnet3/xconfig/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
# This library has classes and methods to form neural network computation graphs,
# in the nnet3 framework, using higher level abstractions called 'layers'
# (e.g. sub-graphs like LSTMS )
# Note : We use the term 'layer' though the computation graph can have a
# highly non-linear structure as, other terms such as nodes/components have
# already been used in C++ codebase of nnet3.

# This is basically a config parser module, where the configs have very concise
# descriptions of a neural network.

# This module has methods to convert the xconfigs into a configs interpretable
# by nnet3 C++ library. It generates three different configs:
#
# init.config : which is the config with the info necessary for computing
# the preconditioning matrix i.e., LDA transform
# e.g.
# input-node name=input dim=40
# input-node name=ivector dim=100
# output-node name=output input=Append(Offset(input, -2), Offset(input, -1), input, Offset(input, 1), Offset(input, 2), ReplaceIndex(ivector, t, 0)) objective=linear


# 'ref.config' : which is a version of the config file used to generate
# a model for getting left and right context it doesn't read anything for the
# LDA-like transform and/or presoftmax-prior-scale components)
# 'final.config' : which has the actual config used to initialize the model used
# in training i.e, it has file paths for LDA transform and
# other initialization files


__all__ = ["utils", "layers", "parser"]
Loading

0 comments on commit dc26602

Please sign in to comment.