This is a pytorch implementation of RotationNet.
Asako Kanezaki, Yasuyuki Matsushita and Yoshifumi Nishida. RotationNet: Joint Object Categorization and Pose Estimation Using Multiviews from Unsupervised Viewpoints. CVPR, accepted, 2018. (pdf) (project)
We used caffe for the CVPR submission. Please see rotationnet repository for more details including how to reproduce the results in our paper.
$ bash get_modelnet_png.sh
[Su et al. 2015] H. Su, S. Maji, E. Kalogerakis, E. Learned-Miller. Multi-view Convolutional Neural Networks for 3D Shape Recognition. ICCV2015.
This is a subset of ModelNet40.
$ wget https://data.airc.aist.go.jp/kanezaki.asako/data/modelnet40v2png_ori4.tar; tar xvf modelnet40v2png_ori4.tar
Our BEST results are reported on this dataset.
$ bash link_images.sh ./modelnet40v1png ./ModelNet40v1 1
$ bash link_images.sh ./modelnet40v2png ./ModelNet40_20 2
Or
$ bash link_images.sh ./modelnet40v2png_ori4 ./ModelNet40_20
$ python train_rotationnet.py --pretrained -a alexnet -b 400 --lr 0.01 --epochs 1500 ./ModelNet40_20 | tee log_ModelNet40_20_rotationnet.txt
$ python train_rotationnet.py --case 1 --pretrained -a alexnet -b 240 --lr 0.01 --epochs 1500 ./ModelNet40v1 | tee log_ModelNet40v1_rotationnet.txt
$ wget https://data.airc.aist.go.jp/kanezaki.asako/data/MIRO.zip
$ unzip MIRO.zip
$ bash link_images_MIRO.sh ./MIRO ./data_MIRO
$ python train_rotationnet.py --case 3 --pretrained -a alexnet -b 480 --lr 0.01 --epochs 1500 ./data_MIRO | tee log_MIRO_160_rotationnet.txt