an implementation of the paper Vision Transformer for Small-Size Datasets
for running an instance -
- clone the repository
change the current working directory to ViT
git clone https://github.com/KaranjotSV/ViT.git cd ViT
- create a virtual environment
a virtual environment named 'env' will be created
virtualenv env
- activate the environment
source env/bin/activate
- install the requirements
pip install -r requirements.txt
- run
python3 run.py
performance of ViT extended with SPT and LSA on CIFAR-100, trained for 20 epochs
model | top-1 accuracy (%) |
---|---|
ViT | 45.05 |
T-ViT | 45.92 |
M-ViT | 44.99 |
L-ViT | 46.01 |
S-ViT | 47.39 |
SL-ViT | 47.98 |