Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update docs (1st pass) #27

Merged
merged 10 commits into from
Nov 9, 2017
10 changes: 10 additions & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
@@ -106,6 +106,8 @@ matrix:
env: PYTHON_VERSION=3.5 NUMPY_VERSION=1.11
- os: linux
env: NUMPY_VERSION=1.12
- os: linux
env: NUMPY_VERSION=1.13

# Try numpy pre-release
- os: linux
@@ -117,6 +119,14 @@ matrix:
env: MAIN_CMD='pycodestyle dust_extinction --count' SETUP_CMD=''

allow_failures:
- os: linux
env: ASTROPY_VERSION=development
EVENT_TYPE='pull_request push cron'

- os: linux
env: NUMPY_VERSION=prerelease
EVENT_TYPE='pull_request push cron'

# Do a PEP8 test with pycodestyle
# (allow to fail unless your code completely compliant)
- os: linux
15 changes: 13 additions & 2 deletions docs/conf.py
Original file line number Diff line number Diff line change
@@ -105,8 +105,8 @@

# Please update these texts to match the name of your package.
html_theme_options = {
'logotext1': 'package', # white, semi-bold
'logotext2': '-template', # orange, light
'logotext1': 'dust_', # white, semi-bold
'logotext2': 'extinction', # orange, light
'logotext3': ':docs' # white, light
}

@@ -131,6 +131,10 @@
# pixels large.
#html_favicon = ''

# example from imexam
#from os.path import join
#html_favicon = join('_static', 'imexam.ico')

# If not '', a 'Last updated on:' timestamp is inserted at every page bottom,
# using the given strftime format.
#html_last_updated_fmt = ''
@@ -142,6 +146,13 @@
# Output file base name for HTML help builder.
htmlhelp_basename = project + 'doc'

# more examples from imexam
#html_logo = '_static/imexam_logo_trans.png'

# Static files to copy after template files
#html_static_path = ['_static']
#html_style = 'imexam.css'


# -- Options for LaTeX output -------------------------------------------------

66 changes: 66 additions & 0 deletions docs/dust_extinction/extinguish.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
###############################
Extinguish or Unextinguish Data
###############################

Two of the three flavors of models include a function to calculate the
factor to multiple (extinguish) or divide (unextinguish) a spectrum by
to add or remove the effects of dust, respectively.

Extinguish is also often called reddening. Extinguishing a spectrum often
reddens the flux, but not always (e.g, on the short wavelength side of the
2175 A bump. So extinguish is the more generic term.

Example: Extinguish a Blackbody
===============================

.. plot::
:include-source:

import matplotlib.pyplot as plt
import numpy as np

import astropy.units as u
from astropy.modeling.blackbody import blackbody_lambda

from dust_extinction.dust_extinction import CCM89

# generate wavelengths between 0.1 and 3 microns
# within the valid range for the CCM89 R(V) dependent relationship
lam = np.logspace(np.log10(0.1), np.log10(3.0), num=1000)

# setup the inputs for the blackbody function
wavelengths = lam*1e4*u.AA
temperature = 10000*u.K

# get the blackbody flux
flux = blackbody_lambda(wavelengths, temperature)

# initialize the model
ext = CCM89(Rv=3.1)

# get the extinguished blackbody flux for different amounts of dust
flux_ext_av05 = flux*ext.extinguish(wavelengths, Av=0.5)
flux_ext_av15 = flux*ext.extinguish(wavelengths, Av=1.5)
flux_ext_ebv10 = flux*ext.extinguish(wavelengths, Ebv=1.0)

# plot the intrinsic and extinguished fluxes
fig, ax = plt.subplots()

ax.plot(wavelengths, flux, label='Intrinsic')
ax.plot(wavelengths, flux_ext_av05, label='$A(V) = 0.5$')
ax.plot(wavelengths, flux_ext_av15, label='$A(V) = 1.5$')
ax.plot(wavelengths, flux_ext_ebv10, label='$E(B-V) = 1.0$')

ax.set_xlabel('$\lambda$ [$\AA$]')
ax.set_ylabel('$Flux$')

ax.set_xscale('log')
ax.set_yscale('log')

ax.set_title('Example extinguishing a blackbody')

ax.legend(loc='best')
plt.tight_layout()
plt.show()


122 changes: 122 additions & 0 deletions docs/dust_extinction/fit_extinction.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,122 @@
#####################
Fit Extinction Curves
#####################

The ``dust_extinction`` package is built on the `astropy.modeling
<http://docs.astropy.org/en/stable/modeling/>`_ package. Fitting is
done in the standard way for this package where the model is initialized
with a starting point (either the default or user input), the fitter
is choosen, and the fit performed.

Example: FM90 Fit
=================

In this example, the FM90 model is used to fit the observed average
extinction curve for the LMC outside of the LMC2 supershell region
(G03_LMCAvg ``dust_extinction`` model).

.. plot::
:include-source:

import matplotlib.pyplot as plt
import numpy as np

from astropy.modeling.fitting import LevMarLSQFitter

from dust_extinction.dust_extinction import G03_LMCAvg, FM90

# get an observed extinction curve to fit
g03_model = G03_LMCAvg()

x = g03_model.obsdata_x
# convert to E(x-V)/E(B0V)
y = (g03_model.obsdata_axav - 1.0)*g03_model.Rv
# only fit the UV portion (FM90 only valid in UV)
gindxs, = np.where(x > 3.125)

# initialize the model
fm90_init = FM90()

# pick the fitter
fit = LevMarLSQFitter()

# fit the data to the FM90 model using the fitter
# use the initialized model as the starting point
g03_fit = fit(fm90_init, x[gindxs], y[gindxs])

# plot the observed data, initial guess, and final fit
fig, ax = plt.subplots()

ax.plot(x, y, 'ko', label='Observed Curve')
ax.plot(x[gindxs], fm90_init(x[gindxs]), label='Initial guess')
ax.plot(x[gindxs], g03_fit(x[gindxs]), label='Fitted model')

ax.set_xlabel('$x$ [$\mu m^{-1}$]')
ax.set_ylabel('$E(x-V)/E(B-V)$')

ax.set_title('Example FM90 Fit to G03_LMCAvg curve')

ax.legend(loc='best')
plt.tight_layout()
plt.show()

Example: P92 Fit
================

In this example, the P92 model is used to fit the observed average
extinction curve for the MW as tabulted by Pei (1992).

.. plot::
:include-source:

import matplotlib.pyplot as plt
import numpy as np

from astropy.modeling.fitting import LevMarLSQFitter

from dust_extinction.dust_extinction import P92

# Milky Way observed extinction as tabulated by Pei (1992)
MW_x = [0.21, 0.29, 0.45, 0.61, 0.80, 1.11, 1.43, 1.82,
2.27, 2.50, 2.91, 3.65, 4.00, 4.17, 4.35, 4.57, 4.76,
5.00, 5.26, 5.56, 5.88, 6.25, 6.71, 7.18, 7.60,
8.00, 8.50, 9.00, 9.50, 10.00]
MW_x = np.array(MW_x)
MW_exvebv = [-3.02, -2.91, -2.76, -2.58, -2.23, -1.60, -0.78, 0.00,
1.00, 1.30, 1.80, 3.10, 4.19, 4.90, 5.77, 6.57, 6.23,
5.52, 4.90, 4.65, 4.60, 4.73, 4.99, 5.36, 5.91,
6.55, 7.45, 8.45, 9.80, 11.30]
MW_exvebv = np.array(MW_exvebv)
Rv = 3.08
MW_axav = MW_exvebv/Rv + 1.0

# get an observed extinction curve to fit
x = MW_x
y = MW_axav

# initialize the model
p92_init = P92()

# pick the fitter
fit = LevMarLSQFitter()

# fit the data to the P92 model using the fitter
# use the initialized model as the starting point
# accuracy set to avoid warning the fit may have failed
p92_fit = fit(p92_init, x, y, acc=1e-3)

# plot the observed data, initial guess, and final fit
fig, ax = plt.subplots()

ax.plot(x, y, 'ko', label='Observed Curve')
ax.plot(x, p92_init(x), label='Initial guess')
ax.plot(x, p92_fit(x), label='Fitted model')

ax.set_xlabel('$x$ [$\mu m^{-1}$]')
ax.set_ylabel('$A(x)/A(V)$')

ax.set_title('Example P92 Fit to MW average curve')

ax.legend(loc='best')
plt.tight_layout()
plt.show()
84 changes: 0 additions & 84 deletions docs/dust_extinction/index.rst

This file was deleted.

280 changes: 280 additions & 0 deletions docs/dust_extinction/model_flavors.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,280 @@
#############
Model Flavors
#############

There are three differnet types of models: average, R(V)+ dependent prediction,
and shape fitting.

Average models
==============

These models provide averages from the literature with the ability to
interpolate between the observed data points.
Models are provided for the Magellanic Clouds from Gordon et al. (2003).
Models for the Milky Way still to be added (both UV/optical/NIR and IR).

.. plot::

import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u

from dust_extinction.dust_extinction import (G03_SMCBar,
G03_LMCAvg,
G03_LMC2)

fig, ax = plt.subplots()

# generate the curves and plot them
x = np.arange(0.3,10.0,0.1)/u.micron

ext_model = G03_SMCBar()
ax.plot(x,ext_model(x),label='G03 SMCBar')

ext_model = G03_LMCAvg()
ax.plot(x,ext_model(x),label='G03 LMCAvg')

ext_model = G03_LMC2()
ax.plot(x,ext_model(x),label='G03 LMC2')

ax.set_xlabel('$x$ [$\mu m^{-1}$]')
ax.set_ylabel('$A(x)/A(V)$')

ax.legend(loc='best')
plt.tight_layout()
plt.show()

R(V) (+ other variables) dependent prediction models
====================================================

These models provide predictions of the shape of the dust extinction
given input variable(s).

These include CCM89 the original R(V) dependent model from
Cardelli, Clayton, and Mathis (1989) and updated versions F99
(Fitzpatrick 1999). These models are based on the average
behavior of extinction in the Milky Way.

In addition, the (R(V), f_A) two parameter relationship from
Gordon et al. (2016) is included. This model is based on the average
behavior of extinction in the Milky Way, Large Magellanic Cloud, and
Small Magellanic Cloud.

.. plot::

import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u

from dust_extinction.dust_extinction import CCM89

fig, ax = plt.subplots()

# generate the curves and plot them
x = np.arange(0.5,10.0,0.1)/u.micron

Rvs = ['2.0','3.0','4.0','5.0','6.0']
for cur_Rv in Rvs:
ext_model = CCM89(Rv=cur_Rv)
ax.plot(x,ext_model(x),label='R(V) = ' + str(cur_Rv))

ax.set_xlabel('$x$ [$\mu m^{-1}$]')
ax.set_ylabel('$A(x)/A(V)$')

ax.set_title('CCM89')

ax.legend(loc='best')
plt.tight_layout()
plt.show()

.. plot::

import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u

from dust_extinction.dust_extinction import F99

fig, ax = plt.subplots()

# temp model to get the correct x range
text_model = F99()

# generate the curves and plot them
x = np.arange(text_model.x_range[0], text_model.x_range[1],0.1)/u.micron

Rvs = ['2.0','3.0','4.0','5.0','6.0']
for cur_Rv in Rvs:
ext_model = F99(Rv=cur_Rv)
ax.plot(x,ext_model(x),label='R(V) = ' + str(cur_Rv))

ax.set_xlabel('$x$ [$\mu m^{-1}$]')
ax.set_ylabel('$A(x)/A(V)$')

ax.set_title('F99')

ax.legend(loc='best')
plt.tight_layout()
plt.show()

.. plot::

import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u

from dust_extinction.dust_extinction import G16

fig, ax = plt.subplots()

# temp model to get the correct x range
text_model = G16()

# generate the curves and plot them
x = np.arange(text_model.x_range[0], text_model.x_range[1],0.1)/u.micron

Rvs = ['2.0','3.0','4.0','5.0','6.0']
for cur_Rv in Rvs:
ext_model = G16(RvA=cur_Rv, fA=1.0)
ax.plot(x,ext_model(x),label=r'$R_A(V) = ' + str(cur_Rv) + '$')

ax.set_xlabel('$x$ [$\mu m^{-1}$]')
ax.set_ylabel('$A(x)/A(V)$')

ax.set_title('G16; $f_A = 1.0$; $R(V)_A$ variable')

ax.legend(loc='best', title=r'$f_A = 1.0$')
plt.tight_layout()
plt.show()

.. plot::

import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u

from dust_extinction.dust_extinction import G16

fig, ax = plt.subplots()

# temp model to get the correct x range
text_model = G16()

# generate the curves and plot them
x = np.arange(text_model.x_range[0], text_model.x_range[1],0.1)/u.micron

fAs = [0.0, 0.2, 0.4, 0.6, 0.8, 1.0]
for cur_fA in fAs:
ext_model = G16(RvA=3.1, fA=cur_fA)
ax.plot(x,ext_model(x),label=r'$f_A = ' + str(cur_fA) + '$')

ax.set_xlabel('$x$ [$\mu m^{-1}$]')
ax.set_ylabel('$A(x)/A(V)$')

ax.set_title('G16; $f_A$ variable; $R(V)_A = 3.1$')

ax.legend(loc='best', title=r'$R_A(V) = 3.1$')
plt.tight_layout()
plt.show()


Shape fitting models
====================

These models are used to fit the detailed shape of dust extinction curves.
The FM90 (Fitzpatrick & Mass 1990) model uses 6 parameters to fit the
shape of the ultraviolet extinction.
The P92 (Pei 1992) uses 19 parameters to fit the shape of the X-ray to
far-infrared extinction.

.. plot::

import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u

from dust_extinction.dust_extinction import FM90

fig, ax = plt.subplots()

# generate the curves and plot them
x = np.arange(3.8,8.6,0.1)/u.micron

ext_model = FM90()
ax.plot(x,ext_model(x),label='total')

ext_model = FM90(C3=0.0, C4=0.0)
ax.plot(x,ext_model(x),label='linear term')

ext_model = FM90(C1=0.0, C2=0.0, C4=0.0)
ax.plot(x,ext_model(x),label='bump term')

ext_model = FM90(C1=0.0, C2=0.0, C3=0.0)
ax.plot(x,ext_model(x),label='FUV rise term')

ax.set_xlabel('$x$ [$\mu m^{-1}$]')
ax.set_ylabel('$E(\lambda - V)/E(B - V)$')

ax.set_title('FM90')

ax.legend(loc='best')
plt.tight_layout()
plt.show()

.. plot::

import numpy as np
import matplotlib.pyplot as plt
import astropy.units as u

from dust_extinction.dust_extinction import P92

fig, ax = plt.subplots()

# generate the curves and plot them
lam = np.logspace(-3.0, 3.0, num=1000)
x = (1.0/lam)/u.micron

ext_model = P92()
ax.plot(1/x,ext_model(x),label='total')

ext_model = P92(FUV_amp=0., NUV_amp=0.0,
SIL1_amp=0.0, SIL2_amp=0.0, FIR_amp=0.0)
ax.plot(1./x,ext_model(x),label='BKG only')

ext_model = P92(NUV_amp=0.0,
SIL1_amp=0.0, SIL2_amp=0.0, FIR_amp=0.0)
ax.plot(1./x,ext_model(x),label='BKG+FUV only')

ext_model = P92(FUV_amp=0.,
SIL1_amp=0.0, SIL2_amp=0.0, FIR_amp=0.0)
ax.plot(1./x,ext_model(x),label='BKG+NUV only')

ext_model = P92(FUV_amp=0., NUV_amp=0.0,
SIL2_amp=0.0)
ax.plot(1./x,ext_model(x),label='BKG+FIR+SIL1 only')

ext_model = P92(FUV_amp=0., NUV_amp=0.0,
SIL1_amp=0.0)
ax.plot(1./x,ext_model(x),label='BKG+FIR+SIL2 only')

ext_model = P92(FUV_amp=0., NUV_amp=0.0,
SIL1_amp=0.0, SIL2_amp=0.0)
ax.plot(1./x,ext_model(x),label='BKG+FIR only')

ax.set_xscale('log')
ax.set_yscale('log')

ax.set_ylim(1e-3,10.)

ax.set_xlabel('$\lambda$ [$\mu$m]')
ax.set_ylabel('$A(x)/A(V)$')

ax.set_title('P92')

ax.legend(loc='best')
plt.tight_layout()
plt.show()



2 changes: 2 additions & 0 deletions docs/dust_extinction/reference_api.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
.. automodapi:: dust_extinction.dust_extinction

89 changes: 77 additions & 12 deletions docs/index.rst
Original file line number Diff line number Diff line change
@@ -1,17 +1,82 @@
Documentation
=============
############################
Interstellar Dust Extinction
############################

``dust_extinction`` is a python package to provide interstellar dust extinction
curves.

While there are other python packages that provide some of the extinction
curves contained here, the explicit motivation for this package is to provide
extinction curves to those using them to model/correct their data and those
studying extinction curves directly to better undertand interstellar dust.

This package is developed in the
`astropy affiliated package <http://www.astropy.org/affiliated/>`_
template and uses the
`astropy.modeling <http://docs.astropy.org/en/stable/modeling/>`_
framework.

Installation
============

To be added

User Documenation
=================

.. toctree::
:maxdepth: 2

Flavors of Models <dust_extinction/model_flavors.rst>
Extinguish (or unextinguish) data <dust_extinction/extinguish.rst>
Fitting extinction curves <dust_extinction/fit_extinction.rst>


Reporting Issues
================

If you have found a bug in ``dust_extinction`` please report it by creating a
new issue on the ``dust_extinction`` `GitHub issue tracker
<https://github.com/karllark/dust_extinction/issues>`_.

This is an affiliated package for the AstroPy package. The documentation for
this package is here:
Please include an example that demonstrates the issue sufficiently so that
the developers can reproduce and fix the problem. You may also be asked to
provide information about your operating system and a full Python
stack trace. The developers will walk you through obtaining a stack
trace if it is necessary.

Contributing
============

Like the `Astropy`_ project, ``dust_extinction`` is made both by and for its
users. We accept contributions at all levels, spanning the gamut from
fixing a typo in the documentation to developing a major new feature.
We welcome contributors who will abide by the `Python Software
Foundation Code of Conduct
<https://www.python.org/psf/codeofconduct/>`_.

``dust_extinction`` follows the same workflow and coding guidelines as
`Astropy`_. The following pages will help you get started with
contributing fixes, code, or documentation (no git or GitHub
experience necessary):

* `How to make a code contribution <http://astropy.readthedocs.io/en/stable/development/workflow/development_workflow.html>`_

* `Coding Guidelines <http://docs.astropy.io/en/latest/development/codeguide.html>`_

* `Try the development version <http://astropy.readthedocs.io/en/stable/development/workflow/get_devel_version.html>`_

* `Developer Documentation <http://docs.astropy.org/en/latest/#developer-documentation>`_


For the complete list of contributors please see the `dust_extinction
contributors page on Github
<https://github.com/karllark/dust_extinction/graphs/contributors>`_.

Reference API
=============
.. toctree::
:maxdepth: 2
:maxdepth: 1

dust_extinction/index.rst
dust_extinction/reference_api.rst

.. note:: The layout of this directory is simply a suggestion. To follow
traditional practice, do *not* edit this page, but instead place
all documentation for the affiliated package inside ``packagename/``.
The traditional practice was intended to allow the affiliated
package to eventually be merged into the main astropy package.
You can follow this practice or choose your own layout.
19 changes: 11 additions & 8 deletions dust_extinction/tests/test_p92.py
Original file line number Diff line number Diff line change
@@ -99,17 +99,20 @@ def test_P92_fitting():

x = x_quant.value

# change from defaults to make the best fit harder to find
p92_init = P92()

fit = LevMarLSQFitter()
p92_fit = fit(p92_init, x, y)
# accuracy set to avoid warning the fit may have failed
p92_fit = fit(p92_init, x, y, acc=1e-3)

fit_vals = p92_fit._parameters

good_vals = [222.840030742, 0.0468548209216, 87.5860789967, 2.0,
17.5852152025, 0.0754660056762, 2.08487806377, 6.13359917075,
0.0496273802215, 0.218586483035, -1.95320679992, 2.0,
0.175702371244, 13.0, 8.82541783881, 2.0,
0.0, 15.0, -136.539895555, 2.0,
0.0, 20.0, -2174.83099919, 2.0]
good_vals = [222.820720554, 0.0468116978742, 87.5683270158, 2.0,
18.1622695074, 0.0770527204445, 2.83090815471, 6.40496987921,
0.0518566585953, 0.218641802256, -1.95087797308, 2.0,
0.00600017900912, 13.0, 109.369888618, 2.0,
0.09441454528, 15.0, -251.33735749, 2.0,
0.189219789029, 20.0, -1130.90875587, 2.0]

np.testing.assert_allclose(good_vals, fit_vals)