Skip to content

Commit

Permalink
Merge 53301bd into 9ac6b3a
Browse files Browse the repository at this point in the history
  • Loading branch information
twheys authored Sep 14, 2018
2 parents 9ac6b3a + 53301bd commit 2436122
Show file tree
Hide file tree
Showing 142 changed files with 14,462 additions and 11,690 deletions.
3 changes: 1 addition & 2 deletions .travis.yml
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
language: python

python:
- "2.7"
- "3.3"
- "3.4"
- "3.5"
Expand All @@ -16,4 +15,4 @@ script:
- "coverage run --source=fireant setup.py test"

after_success:
coveralls
coveralls
203 changes: 94 additions & 109 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ FireAnt - Analytics and Reporting
|BuildStatus| |CoverageStatus| |Codacy| |Docs| |PyPi| |License|


|Brand| is a a data analysis tool used for quickly building charts, tables, reports, and dashboards. It defines a schema for configuring metrics and dimensions which removes most of the leg work of writing queries and formatting charts. |Brand| even works great with Jupyter notebooks and in the Python shell providing quick and easy access to your data.
|Brand| is a a data analysis tool used for quickly building charts, tables, reports, and dashboards. It defines a schema for configuring metrics and dimensions which removes most of the leg work of writing queries and formatting charts. |Brand| even works great with Jupyter notebooks and in the Python shell providing quick and easy access to your data.

.. _intro_end:

Expand All @@ -26,22 +26,34 @@ To install |Brand|, run the following command in the terminal:
.. _installation_end:

Introduction
------------

|Brand| arose out of an environment where several different teams, each working with data sets often with crossover, were individually building their own dashboard platforms. |Brand| was developed as a centralized way of building dashboards without the legwork.

|Brand| is used to create configurations of data sets using |FeatureSlicer| which backs a database table containing analytics and defines sets of |FeatureDimension| and |FeatureMetric|. A |FeatureDimension| is used to group data by properties, such as a timestamp, an account, a device type, etc. A |FeatureMetric| is used to render quanitifiers such as clicks, ROI, conversions into a widget such as a chart or table.

A |FeatureSlicer| exposes a rich builder API that allows a wide range of queries to be constructed that can be rendered as several widgets. A |FeatureSlicer| can be used directly in a Jupyter_ notebook, eliminating the need to write repetitive custom queries and render the data in visualizations.

Slicers
-------

Slicers are the core component of |Brand|. A Slicer is a configuration of two types of elements, metrics and dimensions, which represent what kinds of data exist and how the data can be organized. A metric is a type of data, a measurement such as clicks and a dimension is a range over which metrics can be extended or grouped by. Concretely, metrics represent the data *in* a chart or table and dimensions represent the rows and columns, axes, or categories.
|FeatureSlicer| are the core component of |Brand|. A |FeatureSlicer| is a representation of a data set and is used to execute queries and transform result sets into widgets such as charts or tables.

To configure a slicer, instantiate a |ClassSlicer| with either a |ClassVerticaDatabase|, |ClassMySQLDatabase|, |ClassPostgreSQLDatabase| or a |ClassRedshiftDatabase| and a |ClassTable| or |ClassTables|, with a list of |ClassMetric| and |ClassDimension|.
A |FeatureSlicer| requires only a couple of definitions in order to use: A database connector, a database table, join tables, and dimensions and metrics. Metrics and Dimension definitions tell |Brand| how to query and use data in widgets. Once a slicer is created, it's query API can be used to build queries with just a few lines of code selecting which dimensions and metrics to use and how to filter the data.

.. _slicer_example_start:

Instantiating a Slicer
""""""""""""""""""""""

.. code-block:: python
from fireant.slicer import *
from fireant.database import VerticaDatabase
from pypika import Tables, functions as fn
vertica_database = VerticaDatabase(user='fakeuser', password='fakepassword')
vertica_database = VerticaDatabase(user='myuser', password='mypassword')
analytics, accounts = Tables('analytics', 'accounts')
my_slicer = Slicer(
Expand All @@ -53,7 +65,7 @@ To configure a slicer, instantiate a |ClassSlicer| with either a |ClassVerticaDa
joins=[
# Metrics and dimensions can use columns from joined tables by
# configuring the join here. Joins will only be used when necessary.
# configuring the join here. Joins will only be used when necessary.
Join('accounts', accounts, analytics.account_id == accounts.id),
],
Expand Down Expand Up @@ -100,85 +112,56 @@ To configure a slicer, instantiate a |ClassSlicer| with either a |ClassVerticaDa
.. _slicer_example_end:

.. _slicer_query_example_start:

Querying Data and Rendering Charts
----------------------------------

Once a slicer is configured, it is ready to be used. Each slicer comes with a |ClassSlicerManager| and several |ClassTransformerManager| which expose an interface for executing queries and transforming the results. Each function in the manager uses the same signature. The principal function is ``data`` and all othe functions call this function first. The additional functions provide a transformation to the data.

The notebooks transformer bundle includes different functions for use in Jupyter_ notebooks. Other formats return results in JSON format.

.. _manager_api_start:

* ``my_slicer.manager.data`` - A Pandas_ data frame indexed by the selected dimensions.
* ``my_slicer.manager.query_string`` - A string containing the raw SQL query that FireAnt is running.

* ``my_slicer.notebooks.row_index_table`` - A Datatables_ row-indexed table.
* ``my_slicer.notebooks.column_index_table`` - A Datatables_ column-indexed table.

* ``my_slicer.notebooks.line_chart`` - A Matplotlib_ line chart. (Requires [matplotlib] dependency)
* ``my_slicer.notebooks.column_chart`` - A Matplotlib_ column chart. (Requires [matplotlib] dependency)
* ``my_slicer.notebooks.bar_chart`` - A Matplotlib_ bar chart. (Requires [matplotlib] dependency)

* ``my_slicer.highcharts.line_chart`` - A Highcharts_ line chart.
* ``my_slicer.highcharts.column_chart`` - A Highcharts_ column chart.
* ``my_slicer.highcharts.bar_chart`` - A Highcharts_ bar chart.

* ``my_slicer.datatables.row_index_table`` - A Datatables_ row-indexed table.
* ``my_slicer.datatables.column_index_table`` - A Datatables_ column-indexed table.

.. code-block:: python
def data(self, metrics, dimensions, metric_filters, dimension_filters, references, operations):
.. _manager_api_end:

Examples
--------

Use the ``data`` function to get a Pandas_ data frame or series. The following example will result in a data frame with 'device' as the index, containing the values 'Desktop', 'Tablet', and 'Mobile', and the columns 'Clicks' and 'ROI'.

.. code-block:: python
df = my_slicer.manager.data(
metrics=['clicks', 'roi'],
dimensions=['device']
)
Removing the dimension will yield a similar result except as a Pandas_ series containing 'Clicks' and 'ROI'. These are the aggregated values over the entire data base table.

.. code-block:: python
df = my_slicer.manager.data(
metrics=['clicks', 'roi'],
)
Building queries with a Slicer
""""""""""""""""""""""""""""""

The transformer functions us the data function but then apply a transformation to convert the data into formats for Highcharts_ or Datatables_. The results for these can be serialized directly into json objects.
Use the ``data`` attribute start building a slicer query. A slicer query allows method calls to be chained together to select what should be included in the result.

This example uses the slicer defined above

.. code-block:: python
import json
result = my_slicer.manager.line_chart(
metrics=['clicks', 'roi'],
dimensions=['date', 'device'],
)
json.dumps(result)
.. code-block:: python
import json
result = my_slicer.manager.row_index_table(
metrics=['clicks', 'revenue', 'cost', 'roi'],
dimensions=['account', 'device'],
)
json.dumps(result)
from fireant import Matplotlib, Pandas, daily
matplotlib_chart, pandas_df = my_slicer.data \
.dimension(
# Select the date dimension with a daily interval to group the data by the day applies to
# dimensions are referenced by `slicer.dimensions.{alias}`
my_slicer.dimensions.date(daily),
# Select the device_type dimension to break the data down further by which device it applies to
my_slicer.dimensions.device_type,
) \
.filter(
# Filter the result set to data to the year of 2018
my_slicer.dimensions.date.between(date(2018, 1, 1), date(2018, 12, 31))
) \
# Add a week over week reference to compare data to values from the week prior
.reference(WeekOverWeek(slicer.dimension.date))
.widget(
# Add a matpotlib chart widget
Matplotlib()
# Add axes with series to the chart
.axis(Matplotlib.LineSeries(slicer.metrics.clicks))
# metrics are referenced by `slicer.metrics.{alias}`
.axis(Matplotlib.ColumnSeries(slicer.metrics.cost, slicer.metrics.revenue))
) \
.widget(
# Add a pandas data frame table widget
Pandas(slicer.metrics.clicks, slicer.metrics.cost, slicer.metrics.revenue)
) \
.fetch()
# Display the chart
matplotlib_chart.plot()
# Display the chart
print(pandas_df)
.. _slicer_query_example_end:

License
-------
Expand All @@ -203,7 +186,6 @@ Crafted with ♥ in Berlin.
.. _license_end:



.. _available_badges_start:

.. |BuildStatus| image:: https://travis-ci.org/kayak/fireant.svg?branch=master
Expand Down Expand Up @@ -231,51 +213,54 @@ Crafted with ♥ in Berlin.
.. |FeatureFilter| replace:: *Filter*
.. |FeatureReference| replace:: *Reference*
.. |FeatureOperation| replace:: *Operation*
.. |FeatureTransformer| replace:: *Transformer*

.. |FeatureWidgetGroup| replace:: *Dashboard*
.. |FeatureWidget| replace:: *Section*

.. |ClassSlicer| replace:: ``fireant.Slicer``
.. |ClassSlicerManager| replace:: ``fireant.slicer.SlicerManager``
.. |ClassMetric| replace:: ``fireant.slicer.Metric``
.. |ClassDimension| replace:: ``fireant.slicer.Dimension``

.. |ClassContDimension| replace:: ``fireant.slicer.ContinuousDimension``
.. |ClassDateDimension| replace:: ``fireant.slicer.DatetimeDimension``
.. |ClassCatDimension| replace:: ``fireant.slicer.CategoricalDimension``
.. |ClassUniqueDimension| replace:: ``fireant.slicer.UniqueDimension``

.. |ClassWidgetGroup| replace:: ``fireant.dashboards.WidgetGroup``
.. |ClassWidget| replace:: ``fireant.dashboards.Widget``
.. |ClassWidgetGroupManager| replace:: ``fireant.dashboards.WidgetGroupManager``

.. |ClassEqualityFilter| replace:: ``fireant.slicer.EqualityFilter``
.. |ClassContainsFilter| replace:: ``fireant.slicer.ContainsFilter``
.. |ClassRangeFilter| replace:: ``fireant.slicer.RangeFilter``
.. |ClassFuzzyFilter| replace:: ``fireant.slicer.FuzzyFilter``

.. |ClassFilter| replace:: ``fireant.slicer.Filter``
.. |ClassReference| replace:: ``fireant.slicer.Reference``
.. |ClassOperation| replace:: ``fireant.slicer.Operation``

.. |ClassDashboard| replace:: ``fireant.Dashboard``
.. |ClassSection| replace:: ``fireant.dashboards.Section``

.. |ClassDatabase| replace:: ``fireant.database.Database``
.. |ClassJoin| replace:: ``fireant.slicer.joins.Join``
.. |ClassMetric| replace:: ``fireant.slicer.metrics.Metric``

.. |ClassDimension| replace:: ``fireant.slicer.dimensions.Dimension``
.. |ClassBooleanDimension| replace:: ``fireant.slicer.dimensions.BooleanDimension``
.. |ClassContDimension| replace:: ``fireant.slicer.dimensions.ContinuousDimension``
.. |ClassDateDimension| replace:: ``fireant.slicer.dimensions.DatetimeDimension``
.. |ClassCatDimension| replace:: ``fireant.slicer.dimensions.CategoricalDimension``
.. |ClassUniqueDimension| replace:: ``fireant.slicer.dimensions.UniqueDimension``
.. |ClassDisplayDimension| replace:: ``fireant.slicer.dimensions.DisplayDimension``

.. |ClassFilter| replace:: ``fireant.slicer.filters.Filter``
.. |ClassComparatorFilter| replace:: ``fireant.slicer.filters.ComparatorFilter``
.. |ClassBooleanFilter| replace:: ``fireant.slicer.filters.BooleanFilter``
.. |ClassContainsFilter| replace:: ``fireant.slicer.filters.ContainsFilter``
.. |ClassExcludesFilter| replace:: ``fireant.slicer.filters.ExcludesFilter``
.. |ClassRangeFilter| replace:: ``fireant.slicer.filters.RangeFilter``
.. |ClassPatternFilter| replace:: ``fireant.slicer.filters.PatternFilter``
.. |ClassAntiPatternFilter| replace:: ``fireant.slicer.filters.AntiPatternFilter``

.. |ClassWidget| replace:: ``fireant.slicer.widgets.base.Widget``
.. |ClassPandasWidget| replace:: ``fireant.slicer.widgets.pandas.Pandas``
.. |ClassHighChartsWidget| replace:: ``fireant.slicer.widgets.highcharts.HighCharts``
.. |ClassHighChartsSeries| replace:: ``fireant.slicer.widgets.highcharts.Series``

.. |ClassReference| replace:: ``fireant.slicer.references.Reference``

.. |ClassOperation| replace:: ``fireant.slicer.operations.Operation``

.. |ClassVerticaDatabase| replace:: ``fireant.database.VerticaDatabase``
.. |ClassMySQLDatabase| replace:: ``fireant.database.MySQLDatabase``
.. |ClassPostgreSQLDatabase| replace:: ``fireant.database.PostgreSQLDatabase``
.. |ClassRedshiftDatabase| replace:: ``fireant.database.RedshiftDatabase``

.. |ClassDatetimeInterval| replace:: ``fireant.DatetimeInterval``

.. |ClassTable| replace:: ``pypika.Table``
.. |ClassTables| replace:: ``pypika.Tables``

.. _PyPika: https://github.com/kayak/pypika/
.. _Pandas: http://pandas.pydata.org/
.. _Jupyter: http://jupyter.org/
.. _Matplotlib: http://matplotlib.org/
.. _Highcharts: http://www.highcharts.com/
.. _HighCharts: http://www.highcharts.com/
.. _Datatables: https://datatables.net/
.. _React-Table: https://react-table.js.org/

.. _appendix_end:
Loading

0 comments on commit 2436122

Please sign in to comment.