Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions keras_nlp/src/utils/transformers/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,6 +14,10 @@
"""Convert huggingface models to KerasNLP."""


from keras_nlp.src.utils.transformers.convert_albert import load_albert_backbone
from keras_nlp.src.utils.transformers.convert_albert import (
load_albert_tokenizer,
)
from keras_nlp.src.utils.transformers.convert_bert import load_bert_backbone
from keras_nlp.src.utils.transformers.convert_bert import load_bert_tokenizer
from keras_nlp.src.utils.transformers.convert_distilbert import (
Expand Down Expand Up @@ -64,6 +68,8 @@ def load_transformers_backbone(cls, preset, load_weights):
return load_gpt2_backbone(cls, preset, load_weights)
if cls.__name__ == "DistilBertBackbone":
return load_distilbert_backbone(cls, preset, load_weights)
if cls.__name__ == "AlbertBackbone":
return load_albert_backbone(cls, preset, load_weights)
raise ValueError(
f"{cls} has not been ported from the Hugging Face format yet. "
"Please check Hugging Face Hub for the Keras model. "
Expand Down Expand Up @@ -95,6 +101,8 @@ def load_transformers_tokenizer(cls, preset):
return load_gpt2_tokenizer(cls, preset)
if cls.__name__ == "DistilBertTokenizer":
return load_distilbert_tokenizer(cls, preset)
if cls.__name__ == "AlbertTokenizer":
return load_albert_tokenizer(cls, preset)
raise ValueError(
f"{cls} has not been ported from the Hugging Face format yet. "
"Please check Hugging Face Hub for the Keras model. "
Expand Down
207 changes: 207 additions & 0 deletions keras_nlp/src/utils/transformers/convert_albert.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,207 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np

from keras_nlp.src.utils.preset_utils import HF_CONFIG_FILE
from keras_nlp.src.utils.preset_utils import get_file
from keras_nlp.src.utils.preset_utils import jax_memory_cleanup
from keras_nlp.src.utils.preset_utils import load_config
from keras_nlp.src.utils.transformers.safetensor_utils import SafetensorLoader


def convert_backbone_config(transformers_config):
return {
"vocabulary_size": transformers_config["vocab_size"],
"num_layers": transformers_config["num_hidden_layers"],
"num_heads": transformers_config["num_attention_heads"],
"embedding_dim": transformers_config["embedding_size"],
"hidden_dim": transformers_config["hidden_size"],
"intermediate_dim": transformers_config["intermediate_size"],
"num_groups": transformers_config["num_hidden_groups"],
"num_inner_repetitions": transformers_config["inner_group_num"],
"dropout": transformers_config["attention_probs_dropout_prob"],
"max_sequence_length": transformers_config["max_position_embeddings"],
"num_segments": transformers_config["type_vocab_size"],
}


def convert_weights(backbone, loader):
# Embeddings
loader.port_weight(
keras_variable=backbone.token_embedding.embeddings,
hf_weight_key="albert.embeddings.word_embeddings.weight",
)
loader.port_weight(
keras_variable=backbone.position_embedding.position_embeddings,
hf_weight_key="albert.embeddings.position_embeddings.weight",
)
loader.port_weight(
keras_variable=backbone.segment_embedding.embeddings,
hf_weight_key="albert.embeddings.token_type_embeddings.weight",
)

# Normalization
loader.port_weight(
keras_variable=backbone.embeddings_layer_norm.gamma,
hf_weight_key="albert.embeddings.LayerNorm.weight",
)
loader.port_weight(
keras_variable=backbone.embeddings_layer_norm.beta,
hf_weight_key="albert.embeddings.LayerNorm.bias",
)

# Encoder Embeddings
loader.port_weight(
keras_variable=backbone.embeddings_projection.kernel,
hf_weight_key="albert.encoder.embedding_hidden_mapping_in.weight",
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
)
loader.port_weight(
keras_variable=backbone.embeddings_projection.bias,
hf_weight_key="albert.encoder.embedding_hidden_mapping_in.bias",
)

# Encoder Group Layers
for group_idx in range(backbone.num_groups):
for inner_layer_idx in range(backbone.num_inner_repetitions):
keras_group = backbone.get_layer(
f"group_{group_idx}_inner_layer_{inner_layer_idx}"
)
hf_group_prefix = (
"albert.encoder.albert_layer_groups."
f"{group_idx}.albert_layers.{inner_layer_idx}."
)

loader.port_weight(
keras_variable=keras_group._self_attention_layer.query_dense.kernel,
hf_weight_key=f"{hf_group_prefix}attention.query.weight",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
np.transpose(hf_tensor), keras_shape
),
)
loader.port_weight(
keras_variable=keras_group._self_attention_layer.query_dense.bias,
hf_weight_key=f"{hf_group_prefix}attention.query.bias",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
hf_tensor, keras_shape
),
)
loader.port_weight(
keras_variable=keras_group._self_attention_layer.key_dense.kernel,
hf_weight_key=f"{hf_group_prefix}attention.key.weight",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
np.transpose(hf_tensor), keras_shape
),
)
loader.port_weight(
keras_variable=keras_group._self_attention_layer.key_dense.bias,
hf_weight_key=f"{hf_group_prefix}attention.key.bias",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
hf_tensor, keras_shape
),
)
loader.port_weight(
keras_variable=keras_group._self_attention_layer.value_dense.kernel,
hf_weight_key=f"{hf_group_prefix}attention.value.weight",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
np.transpose(hf_tensor), keras_shape
),
)
loader.port_weight(
keras_variable=keras_group._self_attention_layer.value_dense.bias,
hf_weight_key=f"{hf_group_prefix}attention.value.bias",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
hf_tensor, keras_shape
),
)
loader.port_weight(
keras_variable=keras_group._self_attention_layer.output_dense.kernel,
hf_weight_key=f"{hf_group_prefix}attention.dense.weight",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
np.transpose(hf_tensor), keras_shape
),
)
loader.port_weight(
keras_variable=keras_group._self_attention_layer.output_dense.bias,
hf_weight_key=f"{hf_group_prefix}attention.dense.bias",
hook_fn=lambda hf_tensor, keras_shape: np.reshape(
hf_tensor, keras_shape
),
)
loader.port_weight(
keras_variable=keras_group._self_attention_layer_norm.gamma,
hf_weight_key=f"{hf_group_prefix}attention.LayerNorm.weight",
)
loader.port_weight(
keras_variable=keras_group._self_attention_layer_norm.beta,
hf_weight_key=f"{hf_group_prefix}attention.LayerNorm.bias",
)
loader.port_weight(
keras_variable=keras_group._feedforward_intermediate_dense.kernel,
hf_weight_key=f"{hf_group_prefix}ffn.weight",
hook_fn=lambda hf_tensor, _: np.transpose(
hf_tensor, axes=(1, 0)
),
)
loader.port_weight(
keras_variable=keras_group._feedforward_intermediate_dense.bias,
hf_weight_key=f"{hf_group_prefix}ffn.bias",
)
loader.port_weight(
keras_variable=keras_group._feedforward_output_dense.kernel,
hf_weight_key=f"{hf_group_prefix}ffn_output.weight",
hook_fn=lambda hf_tensor, _: np.transpose(
hf_tensor, axes=(1, 0)
),
)
loader.port_weight(
keras_variable=keras_group._feedforward_output_dense.bias,
hf_weight_key=f"{hf_group_prefix}ffn_output.bias",
)
loader.port_weight(
keras_variable=keras_group._feedforward_layer_norm.gamma,
hf_weight_key=f"{hf_group_prefix}full_layer_layer_norm.weight",
)
loader.port_weight(
keras_variable=keras_group._feedforward_layer_norm.beta,
hf_weight_key=f"{hf_group_prefix}full_layer_layer_norm.bias",
)

# Pooler
loader.port_weight(
keras_variable=backbone.pooled_dense.kernel,
hf_weight_key="albert.pooler.weight",
hook_fn=lambda hf_tensor, _: np.transpose(hf_tensor, axes=(1, 0)),
)
loader.port_weight(
keras_variable=backbone.pooled_dense.bias,
hf_weight_key="albert.pooler.bias",
)

return backbone


def load_albert_backbone(cls, preset, load_weights):
transformers_config = load_config(preset, HF_CONFIG_FILE)
keras_config = convert_backbone_config(transformers_config)
backbone = cls(**keras_config)
if load_weights:
jax_memory_cleanup(backbone)
with SafetensorLoader(preset) as loader:
convert_weights(backbone, loader)
return backbone


def load_albert_tokenizer(cls, preset):
return cls(get_file(preset, "spiece.model"))
29 changes: 29 additions & 0 deletions keras_nlp/src/utils/transformers/convert_albert_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
# Copyright 2024 The KerasNLP Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest

from keras_nlp.src.models.albert.albert_classifier import AlbertClassifier
from keras_nlp.src.tests.test_case import TestCase


class TestTask(TestCase):
@pytest.mark.large
def test_convert_tiny_preset(self):
model = AlbertClassifier.from_preset(
"hf://albert/albert-base-v2", num_classes=2
)
prompt = "That movies was terrible."
model.predict([prompt])

# TODO: compare numerics with huggingface model