Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
55 changes: 29 additions & 26 deletions keras_hub/src/models/mit/mit_backbone.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,13 +23,13 @@
class MiTBackbone(FeaturePyramidBackbone):
def __init__(
self,
depths,
layerwise_depths,
num_layers,
blockwise_num_heads,
blockwise_sr_ratios,
layerwise_num_heads,
layerwise_sr_ratios,
max_drop_path_rate,
patch_sizes,
strides,
layerwise_patch_sizes,
layerwise_strides,
image_shape=(None, None, 3),
hidden_dims=None,
**kwargs,
Expand All @@ -43,12 +43,12 @@ def __init__(
https://github.com/DavidLandup0/deepvision/tree/main/deepvision/models/classification/mix_transformer)

Args:
depths: The number of transformer encoders to be used per layer in the
layerwise_depths: The number of transformer encoders to be used per layer in the
network.
num_layers: int. The number of Transformer layers.
blockwise_num_heads: list of integers, the number of heads to use
layerwise_num_heads: list of integers, the number of heads to use
in the attention computation for each layer.
blockwise_sr_ratios: list of integers, the sequence reduction
layerwise_sr_ratios: list of integers, the sequence reduction
ratio to perform for each layer on the sequence before key and
value projections. If set to > 1, a `Conv2D` layer is used to
reduce the length of the sequence.
Expand Down Expand Up @@ -82,7 +82,10 @@ def __init__(
model.fit(images, labels, epochs=3)
```
"""
dpr = [x for x in np.linspace(0.0, max_drop_path_rate, sum(depths))]
dpr = [
x
for x in np.linspace(0.0, max_drop_path_rate, sum(layerwise_depths))
]

# === Layers ===
cur = 0
Expand All @@ -93,24 +96,24 @@ def __init__(
for i in range(num_layers):
patch_embed_layer = OverlappingPatchingAndEmbedding(
project_dim=hidden_dims[i],
patch_size=patch_sizes[i],
stride=strides[i],
patch_size=layerwise_patch_sizes[i],
stride=layerwise_strides[i],
name=f"patch_and_embed_{i}",
)
patch_embedding_layers.append(patch_embed_layer)

transformer_block = [
HierarchicalTransformerEncoder(
project_dim=hidden_dims[i],
num_heads=blockwise_num_heads[i],
sr_ratio=blockwise_sr_ratios[i],
num_heads=layerwise_num_heads[i],
sr_ratio=layerwise_sr_ratios[i],
drop_prob=dpr[cur + k],
name=f"hierarchical_encoder_{i}_{k}",
)
for k in range(depths[i])
for k in range(layerwise_depths[i])
]
transformer_blocks.append(transformer_block)
cur += depths[i]
cur += layerwise_depths[i]
layer_norms.append(keras.layers.LayerNormalization(epsilon=1e-5))

# === Functional Model ===
Expand All @@ -120,7 +123,7 @@ def __init__(
for i in range(num_layers):
# Compute new height/width after the `proj`
# call in `OverlappingPatchingAndEmbedding`
stride = strides[i]
stride = layerwise_strides[i]
new_height, new_width = (
int(ops.shape(x)[1] / stride),
int(ops.shape(x)[2] / stride),
Expand All @@ -138,30 +141,30 @@ def __init__(
super().__init__(inputs=image_input, outputs=x, **kwargs)

# === Config ===
self.depths = depths
self.layerwise_depths = layerwise_depths
self.image_shape = image_shape
self.hidden_dims = hidden_dims
self.pyramid_outputs = pyramid_outputs
self.num_layers = num_layers
self.blockwise_num_heads = blockwise_num_heads
self.blockwise_sr_ratios = blockwise_sr_ratios
self.layerwise_num_heads = layerwise_num_heads
self.layerwise_sr_ratios = layerwise_sr_ratios
self.max_drop_path_rate = max_drop_path_rate
self.patch_sizes = patch_sizes
self.strides = strides
self.layerwise_patch_sizes = layerwise_patch_sizes
self.layerwise_strides = layerwise_strides

def get_config(self):
config = super().get_config()
config.update(
{
"depths": self.depths,
"layerwise_depths": self.layerwise_depths,
"hidden_dims": self.hidden_dims,
"image_shape": self.image_shape,
"num_layers": self.num_layers,
"blockwise_num_heads": self.blockwise_num_heads,
"blockwise_sr_ratios": self.blockwise_sr_ratios,
"layerwise_num_heads": self.layerwise_num_heads,
"layerwise_sr_ratios": self.layerwise_sr_ratios,
"max_drop_path_rate": self.max_drop_path_rate,
"patch_sizes": self.patch_sizes,
"strides": self.strides,
"layerwise_patch_sizes": self.layerwise_patch_sizes,
"layerwise_strides": self.layerwise_strides,
}
)
return config
10 changes: 5 additions & 5 deletions keras_hub/src/models/mit/mit_backbone_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,15 +8,15 @@
class MiTBackboneTest(TestCase):
def setUp(self):
self.init_kwargs = {
"depths": [2, 2],
"layerwise_depths": [2, 2],
"image_shape": (32, 32, 3),
"hidden_dims": [4, 8],
"num_layers": 2,
"blockwise_num_heads": [1, 2],
"blockwise_sr_ratios": [8, 4],
"layerwise_num_heads": [1, 2],
"layerwise_sr_ratios": [8, 4],
"max_drop_path_rate": 0.1,
"patch_sizes": [7, 3],
"strides": [4, 2],
"layerwise_patch_sizes": [7, 3],
"layerwise_strides": [4, 2],
}
self.input_size = 32
self.input_data = np.ones(
Expand Down
10 changes: 5 additions & 5 deletions keras_hub/src/models/mit/mit_image_classifier_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,15 +12,15 @@ def setUp(self):
self.images = np.ones((2, 32, 32, 3), dtype="float32")
self.labels = [0, 3]
self.backbone = MiTBackbone(
depths=[2, 2, 2, 2],
layerwise_depths=[2, 2, 2, 2],
image_shape=(32, 32, 3),
hidden_dims=[4, 8],
num_layers=2,
blockwise_num_heads=[1, 2],
blockwise_sr_ratios=[8, 4],
layerwise_num_heads=[1, 2],
layerwise_sr_ratios=[8, 4],
max_drop_path_rate=0.1,
patch_sizes=[7, 3],
strides=[4, 2],
layerwise_patch_sizes=[7, 3],
layerwise_strides=[4, 2],
)
self.init_kwargs = {
"backbone": self.backbone,
Expand Down
24 changes: 12 additions & 12 deletions keras_hub/src/models/mit/mit_presets.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b0_ade20k_512/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b0_ade20k_512/2",
},
"mit_b1_ade20k_512": {
"metadata": {
Expand All @@ -32,7 +32,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b1_ade20k_512/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b1_ade20k_512/2",
},
"mit_b2_ade20k_512": {
"metadata": {
Expand All @@ -43,7 +43,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b2_ade20k_512/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b2_ade20k_512/2",
},
"mit_b3_ade20k_512": {
"metadata": {
Expand All @@ -54,7 +54,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b3_ade20k_512/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b3_ade20k_512/2",
},
"mit_b4_ade20k_512": {
"metadata": {
Expand All @@ -65,7 +65,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b4_ade20k_512/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b4_ade20k_512/2",
},
"mit_b5_ade20k_640": {
"metadata": {
Expand All @@ -76,7 +76,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b5_ade20k_640/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b5_ade20k_640/2",
},
"mit_b0_cityscapes_1024": {
"metadata": {
Expand All @@ -87,7 +87,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b0_cityscapes_1024/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b0_cityscapes_1024/2",
},
"mit_b1_cityscapes_1024": {
"metadata": {
Expand All @@ -98,7 +98,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b1_cityscapes_1024/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b1_cityscapes_1024/2",
},
"mit_b2_cityscapes_1024": {
"metadata": {
Expand All @@ -109,7 +109,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b2_cityscapes_1024/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b2_cityscapes_1024/2",
},
"mit_b3_cityscapes_1024": {
"metadata": {
Expand All @@ -120,7 +120,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b3_cityscapes_1024/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b3_cityscapes_1024/2",
},
"mit_b4_cityscapes_1024": {
"metadata": {
Expand All @@ -131,7 +131,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b4_cityscapes_1024/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b4_cityscapes_1024/2",
},
"mit_b5_cityscapes_1024": {
"metadata": {
Expand All @@ -142,7 +142,7 @@
"official_name": "MiT",
"path": "mit",
},
"kaggle_handle": "kaggle://keras/mit/keras/mit_b5_cityscapes_1024/1",
"kaggle_handle": "kaggle://kerashub/mix-transformer/keras/mit_b5_cityscapes_1024/2",
},
}

Expand Down
45 changes: 0 additions & 45 deletions keras_hub/src/models/mit/mix_transformer_backbone_test.py

This file was deleted.

Loading
Loading