Skip to content

kimfinale/COVID-19_NorthKorea

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

북한코로나 19

개요

이 문서는 북한 코로나19 프로젝트 기술분석 (descriptive analysis)과 수리모형 (mathematical model)을 이용한 분석에 사용된 R 코드와 설명을 포함한다.

패키지 설치 및 로딩

아래에 있는 몇 가지 R 패키지가 필요하다. R 패키지를 기존에 install 하지 않은 경우에는 커멘트 (#)를 제거 하고 install.packages 명령을 실행한다.

library(nimble) # Bayesian MCMC related in some files in the R folder although which is not required for this particular study  
library(rio) # data import from Excel
library(ggplot2) # plotting
library(dplyr) # data wrangling
library(tidyr) # data wrangling
library(data.table) # data wranggling
library(Rcpp) # model implemented in C++
library(sf) # mapping
library(lubridate) # date
library(readxl) # excel
library(scales) # color scales for plotting
library(readr)
library(gridExtra)

R 폴더에 다양함 함수 (function, method, or subroutine)가 있어 그 파일들을 먼저 source 함수를 이용해 실행한다. C++ 언어로 구현된 모형 (src/models.cpp) 도 실행한다.

files <- list.files("R/", ".R$", full.names=TRUE)
sapply(files, source)
sourceCpp("src/models.cpp")

우리가 분석에 북한 코로나19 자료는 조선중앙TV로동신문의 일별 유열자수에 기반한다. 조선중앙TV는 지역별로 일별 유열자수를 보여주는 데 반해 로동신문 자료는 그렇지 않다. 반편 조선중앙TV는 결측자료가 많아 조선중앙TV의 지역별 일별 환자수를 모두 합해도 로동신문 자료의 일별 유열자수 보다 적다.

지역별 기술 분석 요약표

COVID-19 북한 지역 데이터를 로드하고 분석. 북한의 COVID-19 관련 데이터를 처리하고, 각 지역 및 전체에 대한 요약 테이블을 생성한다.

# COVID-19 데이터를 불러옴
dlist <- rio::import_list("inst/extdata/(2022-0811)_코로나19_조선중앙TV_보도_현황표_시도별_일일유열자.xlsx")

# 지역명 추출
nm <- names(dlist)[2:length(dlist)]

# 데이터를 저장할 빈 리스트 생성
caselist <- vector("list", length(nm))

# 각 지역 데이터 병합
for (i in 1:length(nm)) {
  # df <- data.frame(case = dlist[[i+1]]$`당일 발생자수`)
  df <- dlist[[i+1]]
  # add a few columns to easier management and plotting
  df$case <- dlist[[i+1]]$`당일 발생자수`
  df$date <- extract_dates(dlist[[i+1]]$기준시)
  df$province <- nm[i]
  caselist[[i]] <- df
}

# 데이터 프레임 결합
df <- do.call("rbind", caselist)

# 시도명 (Province) | 초기 날짜 (Initial Date) | 최종 날짜 (Final Date) | 기간 (Duration) | 일일 최대 발생자 날짜 (Date of the Highest Daily New Cases) | 일일 최대 발생자 수 (Maximum Daily New Cases) | 누적 발생자 수 (Cumulative Cases) | 누적 완쾌자 수 (Cumulative Recovered Cases) | 누적 사망자 수 (Cumulative Death Cases) | 인구 수 (Population) | 발병률 (Incidence Rate)


# 결측치가 있는 행을 제거
df <- subset(df, !is.na(case))

# 지역별 요약 테이블 생성
df_ds <- df %>%
  group_by(province) %>%
  summarize(
    initial_date         = min(date[case != 0]),
    final_date           = max(date[case != 0]),
    duration             = as.numeric(difftime(final_date, initial_date, units="days")) + 1,
    max_daily_cases_date = date[which.max(case)],
    max_daily_cases      = max(case),
    adding_new_cases     = sum(case),
    cumulative_recovered = sum(`당일 완쾌자수`, na.rm=T),
    cumulative_deaths    = sum(`당일 사망자 수`, na.rm=T),
    cumulative_cases     = cumulative_recovered + cumulative_deaths)

# 인구 데이터 불러오기

# 2008 census data
popdata <- fread("inst/extdata/census_2008.csv")
popdata$Province_Korean <- c("양강","함북","함남","강원","자강","평북","평남","황북","황남","평양","남포")

pop = popdata[,c("Total", "Province_Korean", "Province")]
pop$Province[pop$Province == "Kangwon"] <- "Gangwon"

# 지역 데이터와 인구 데이터 결합
df_ds$Province_Korean = df_ds$province
df_ds = left_join(df_ds, pop, by="Province_Korean")

# Rasonn City merged with Hamgyeongbuk-do Province, and Kaesong merged with Hwanghaebuk-do Province.

# 지역 데이터 병합
df_ds[df_ds$province == "황북","adding_new_cases"] = df_ds[df_ds$province == "황북","adding_new_cases"] +  df_ds[df_ds$province == "개성","adding_new_cases"] 
df_ds[df_ds$province == "함북","adding_new_cases"] = df_ds[df_ds$province == "함북","adding_new_cases"] +  df_ds[df_ds$province == "나선","adding_new_cases"]

df_ds[df_ds$province == "황북","cumulative_recovered"] = df_ds[df_ds$province == "황북","cumulative_recovered"] +  df_ds[df_ds$province == "개성","cumulative_recovered"] 
df_ds[df_ds$province == "함북","cumulative_recovered"] = df_ds[df_ds$province == "함북","cumulative_recovered"] +  df_ds[df_ds$province == "나선","cumulative_recovered"]

df_ds[df_ds$province == "황북","cumulative_deaths"] = df_ds[df_ds$province == "황북","cumulative_deaths"] +  df_ds[df_ds$province == "개성","cumulative_deaths"] 
df_ds[df_ds$province == "함북","cumulative_deaths"] = df_ds[df_ds$province == "함북","cumulative_deaths"] +  df_ds[df_ds$province == "나선","cumulative_deaths"]

df_ds[df_ds$province == "황북","cumulative_cases"] = df_ds[df_ds$province == "황북","cumulative_cases"] +  df_ds[df_ds$province == "개성","cumulative_cases"] 
df_ds[df_ds$province == "함북","cumulative_cases"] = df_ds[df_ds$province == "함북","cumulative_cases"] +  df_ds[df_ds$province == "나선","cumulative_cases"]

# Attack rate 계산
df_ds$attack_rate = round(100 * df_ds$cumulative_cases / df_ds$Total, digits = 1)
df_ds <- df_ds[order(df_ds$Province),]

# 테이블 포맷팅
summary_table <- df_ds
summary_table <- summary_table[!summary_table$province %in% c("개성", "나선"), ]
summary_table$attack_rate_percent   <- paste0(summary_table$attack_rate,"%")
summary_table$max_daily_cases       <- sapply(summary_table$max_daily_cases, format, big.mark = ",")
summary_table$adding_new_cases      <- sapply(summary_table$adding_new_cases, format, big.mark = ",")
summary_table$cumulative_recovered  <- sapply(summary_table$cumulative_recovered, format, big.mark = ",")
summary_table$cumulative_deaths     <- sapply(summary_table$cumulative_deaths, format, big.mark = ",")
summary_table$cumulative_cases      <- sapply(summary_table$cumulative_cases, format, big.mark = ",")
summary_table$Total                 <- sapply(summary_table$Total, format, big.mark = ",")

summary_table_kr <- summary_table[, c("province", "initial_date", "final_date", 
                           "duration", "max_daily_cases_date", "max_daily_cases", 
                           "cumulative_cases", "cumulative_recovered", "cumulative_deaths" , 
                           "Total", "attack_rate_percent")]

# 한글로 된 요약 테이블을 CSV 파일로 저장 (<표> 지역별 발병률)
summary_table_kr <- summary_table_kr[order(summary_table_kr$province), ]

# write.csv(summary_table_kr, file = "outputs/summary_table_kr.csv", row.names = FALSE)

df_cases_all <- df %>%
  summarize(
    Province             = "Korean Central TV Total", 
    adding_new_cases     = sum(case),
    cumulative_recovered = sum(`당일 완쾌자수`),
    cumulative_deaths    = sum(`당일 사망자 수`),
    cumulative_cases     = cumulative_recovered + cumulative_deaths)

df_cases_all$adding_new_cases     <- sapply(df_cases_all$adding_new_cases, format, big.mark = ",")
df_cases_all$cumulative_recovered <- sapply(df_cases_all$cumulative_recovered, format, big.mark = ",")
df_cases_all$cumulative_deaths    <- sapply(df_cases_all$cumulative_deaths, format, big.mark = ",")
df_cases_all$cumulative_cases     <- sapply(df_cases_all$cumulative_cases, format, big.mark = ",")

# 지역별 계산

# 지역별 데이터 프레임 생성
df_cases_region_kr <- summary_table[, c("province",
                             "adding_new_cases", "cumulative_recovered", 
                             "cumulative_deaths", "cumulative_cases")]

# 한국어로 된 데이터 프레임을 알파벳 순으로 정렬
df_cases_region_kr <- df_cases_region_kr[order(df_cases_region_kr$province), ]

# 첫 번째 열의 열 이름을 "Province"로 변경
colnames(df_cases_region_kr)[1] <- "Province"

df_cases_kr <- rbind(df_cases_region_kr, df_cases_all)

names(df_cases_kr) <- c("지역", "누적 신규 유열자", 
                        "누적 신규 회복", "누적 신규 사망", "누적 환자")

df_cases_kr
## # A tibble: 12 × 5
##    지역         `누적 신규 유열자` `누적 신규 회복` `누적 신규 사망` `누적 환자`
##    <chr>        <chr>              <chr>            <chr>            <chr>      
##  1 강원         225,445            258,248          7                258,255    
##  2 남포         133,089            149,035          0                149,035    
##  3 양강         114,316            129,966          8                129,974    
##  4 자강         125,578            156,617          0                156,617    
##  5 평남         425,965            437,789          5                437,794    
##  6 평북         354,206            388,616          1                388,617    
##  7 평양         608,063            662,337          12               662,349    
##  8 함남         245,487            257,001          2                257,003    
##  9 함북         112,545            141,092          1                141,093    
## 10 황남         359,760            351,613          3                351,616    
## 11 황북         412,794            432,810          1                432,811    
## 12 Korean Cent… 3,117,248          3,365,124        40               3,365,164
# CSV 파일로 저장 (<표>  신규 유열자, 당일 완쾌자, 당일 사망자 합계)
# write.csv(df_cases_kr, file = "outputs/summary_table_total_kr.csv", row.names = FALSE)

로동신문과 조선중앙TV 데이터 비교

노동신문과 조선중앙TV 데이터 날짜별 비교 (기준시). 조선중앙TV와 노동신문의 COVID-19 데이터를 날짜별로 비교하고, 결과를 CSV 파일로 출력한다.

# 조선중앙TV 데이터를 기준일(date)로 그룹화하고 요약
summary_dates_KCTV <- df %>% group_by(date) %>%
  summarize("신규 유열자(조선중앙TV)" = sum(case),
            "완쾌자 (조선중앙TV)"     = sum(`당일 완쾌자수`),
            "사망자 (조선중앙TV)"     = sum(`당일 사망자 수`))

# 노동신문 데이터를 읽어오기
summary_dates_labor <- read_excel("inst/extdata/(2022-0811)_코로나19_노동신문_보도_현황표_전체_일일유열자 2.xlsx")

# 열 이름 변경
names(summary_dates_labor) <- c("기준일", "신규 유열자(노동신문)", "완쾌자(노동신문)", "사망자(노동신문)")

# 기준일을 기준으로 두 데이터 프레임을 결합
summary_dates <- left_join(summary_dates_labor, summary_dates_KCTV, by = c("기준일" = "date"))

summary_dates$`완쾌자(노동신문)` <- as.numeric(summary_dates$`완쾌자(노동신문)`)

# 숫자를 천 단위로 쉼표로 포맷팅
summary_dates_table <- summary_dates %>%
  mutate(across(2:7, ~ format(., big.mark = ",")))

# 각 열의 "NA" 값을 "-"로 대체
summary_dates_table <- as.data.frame(apply(summary_dates_table , 2, function(x) gsub("^\\s*NA$", "-", x)))
summary_dates_table$기준일 <- format(as.Date(summary_dates_table$기준일), "%Y/%m/%d")

head(summary_dates_table)
##       기준일 신규 유열자(노동신문) 완쾌자(노동신문) 사망자(노동신문)
## 1 2022/05/12                18,000                -               - 
## 2 2022/05/13               174,440           81,430               21
## 3 2022/05/14               296,180          252,400               15
## 4 2022/05/15               392,920          152,600               8 
## 5 2022/05/16               269,510          170,460               6 
## 6 2022/05/17               232,880          205,630               6 
##   신규 유열자(조선중앙TV) 완쾌자 (조선중앙TV) 사망자 (조선중앙TV)
## 1                       -                   -                   -
## 2                       -                   -                   -
## 3                 218,188             214,251                  15
## 4                 354,284             130,777                   8
## 5                       -                   -                   -
## 6                 193,162             156,940                   6
# CSV 파일로 저장 (<표>  신규 유열자, 완쾌자, 사망자 일별 자료)
# write.csv(summary_dates_table, file = "outputs/summary_dates.csv", row.names = FALSE)

일별 유열자수

로동신문과 조선중앙TV 자료원을 사용하여 일별 유열자 수를 시각화한다.

# 데이터 프레임 변환
df_long <- summary_dates %>%
   tidyr::pivot_longer(cols = c(`신규 유열자(조선중앙TV)`, `신규 유열자(노동신문)`), 
                      names_to = "source", values_to = "case")
df_long$기준일 <- as.Date(df_long$기준일, format="%Y-%m-%d")


# 두 자료원 트렌드 한 그래프에 나타내기
p2_kr <- ggplot(df_long, aes(x = 기준일, y = case)) +
  geom_col(data = subset(df_long, source == "신규 유열자(노동신문)"), aes(fill = source), alpha = 0.2) +
  geom_col(data = subset(df_long, source == "신규 유열자(조선중앙TV)"), aes(fill = source), alpha = 0.5) +
  scale_fill_manual(values = c("blue", "brown"), labels = c("신규 유열자 (노동신문)", "신규 유열자 (조선중앙TV)"), name = "Data Source") +
  theme_bw() +
  labs(x = "", y = "유열자 수") +
  scale_y_continuous(labels = scales::comma) +
  theme(
    axis.title.y = element_text(margin = margin(t = 0, r = 10, b = 0, l = 0)),
    legend.title = element_blank(),
    legend.position = c(0.75, 0.85)  # Adjust the values to control the position of the legend
  )

p2_kr

# 그래프를 파일로 저장 ([그림] 두 자료원의 신규 유열자 추이 비교)
# ggsave("plots/plot_dates2_kr.png", plot = p2_kr, width = 6.5, height = 4.5, dpi = 300)

# 두 자료원 트렌드 한 그래프에 나타내기
p2_eng <- ggplot(df_long, aes(x = 기준일, y = case)) +
  geom_col(data = subset(df_long, source == "신규 유열자(노동신문)"), aes(fill = source), alpha = 0.3) +
  geom_col(data = subset(df_long, source == "신규 유열자(조선중앙TV)"), aes(fill = source), alpha = 0.5) +
  scale_fill_manual(values = c("blue", "brown"), labels = c("Labor Daily", "Chosun Joongang TV"), name = "Data Source") +
  theme_bw() +
  labs(x = "", y = "Fever cases") +
  scale_y_continuous(labels = scales::comma) +
  theme(
    axis.title.y = element_text(margin = margin(t = 0, r = 10, b = 0, l = 0)),
    legend.title = element_blank(),
    legend.position = c(0.75, 0.85),
    text = element_text(size=16),
    axis.text = element_text(size=13),
    legend.text=element_text(size=13)
  )

# ggsave(paste0("plots/daily_fever_eng_", tstamp(), ".png"), p, width=3.4*2, height=2.7*2)

월별 유열자수 지도에 표기

5월, 6월, 7월에 대한 한국의 지역별 COVID-19 환자 수를 처리하고 지도에 나타낸다.

df_month <- df
df_month$month <- month.name[month(ymd(df_month$date))]

# 월별로 지역별 유열자 수를 집계
df_month <- df_month %>%
  group_by(month, province) %>%
  summarize(adding_new_cases = sum(case))

# 각 월별 데이터 추출 (May, June, July)
df_May  <- df_month[df_month$month == "May",]
df_June <- df_month[df_month$month == "June",]
df_July <- df_month[df_month$month == "July",]

# 지도 데이터 로드
dprk = sf::st_read("inst/extdata/gadm41_PRK_shp/gadm41_PRK_1.shp")
## Reading layer `gadm41_PRK_1' from data source 
##   `G:\My Drive\Projects\COVID19NorthKorea\inst\extdata\gadm41_PRK_shp\gadm41_PRK_1.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 14 features and 11 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: 124.1824 ymin: 37.67598 xmax: 130.6744 ymax: 43.00605
## Geodetic CRS:  WGS 84
dprk$name_kor = c("자강","함북","함남","황북","황남","개성","강원","강원","평북","평남","평양","나선","양강","평북")

dprk$cases_May <- NA
dprk$cases_June <- NA
dprk$cases_July <- NA

# 월별 유열자 수를 지도 데이터에 할당
for (n in dprk$name_kor){
  dprk[dprk$name_kor == n,]$cases_May = df_May[df_May$province == n,]$adding_new_cases 
  dprk[dprk$name_kor == n,]$cases_June = df_June[df_June$province == n,]$adding_new_cases 
  dprk[dprk$name_kor == n,]$cases_July = df_July[df_July$province == n,]$adding_new_cases
}
# 지역명 추가
loc <- as.data.frame(t(sapply(1:14, function(x) colMeans(dprk$geometry[[x]][[1]][1][[1]]))))
names(loc) <- c("lon","lat")
labels = cbind(data.frame(name=dprk$name_kor), loc)

5월

library(RColorBrewer)
plt_May <- ggplot(dprk) +
  geom_sf(aes(fill=cases_May)) +
  geom_text(data = labels, aes(x=lon, y=lat, label=name), size=4, color="#505050")+
  scale_fill_gradientn(colors=brewer.pal(9, "YlOrBr"), name="유열자수",                       limits=c(0,max(dprk$cases_May)))+
  coord_sf()+
  theme_map(legend_position = c(0.96, 0.3)) +
  theme(legend.title = element_text(size=12),
        legend.text = element_text(size=12)) +
  ggtitle("5월")
plt_May

6월

plt_June <- ggplot(dprk) +
  geom_sf(aes(fill=cases_June)) +
  geom_text(data = labels, aes(x=lon, y=lat, label=name), size=4, color="#505050")+
  scale_fill_gradientn(colors=brewer.pal(9, "YlOrBr"), name="유열자수",
                       limits=c(0,max(dprk$cases_May)))+
  coord_sf()+
  theme_map(legend_position = c(0.96, 0.3)) +
  theme(legend.title = element_text(size=12),
        legend.text = element_text(size=12)) +
  ggtitle("6월")
plt_June

7월

plt_July <- ggplot(dprk) +
  geom_sf(aes(fill=cases_July)) +
  geom_text(data = labels, aes(x=lon, y=lat, label=name), size=4, color="#505050")+
  scale_fill_gradientn(colors=brewer.pal(9, "YlOrBr"), name="유열자수",
                       limits=c(0,max(dprk$cases_May)))+
  coord_sf()+
  theme_map(legend_position = c(0.96, 0.3)) +
  theme(legend.title = element_text(size=12),
        legend.text = element_text(size=12)) +
  ggtitle("7월")

plt_July

# grid.arrange(plt_May, plt_June, plt_July, nrow=1)

지역별 코로나19 유행 곡선

조선중앙TV 자료를 이용하여 지역별 코로나19 일별 유열자수를 플롯해 본다. 결측치는 무시하였다.

dlist <- rio::import_list("inst/extdata/(2022-0811)_코로나19_조선중앙TV_보도_현황표_시도별_일일유열자.xlsx")
nm <- names(dlist)[2:length(dlist)]
caselist <- vector("list", length(nm))
for (i in 1:length(nm)) {
  df <- dlist[[i+1]]
  # add a few columns to easier management and plotting
  df$case <- dlist[[i+1]]$`당일 발생자수`
  df$date <- extract_dates(dlist[[i+1]]$기준시)
  df$province <- nm[i]
  caselist[[i]] <- df
}
# create a data frame 
df <- do.call("rbind", caselist)

지역별 유행곡선 플롯하기

p <- ggplot(df, aes(date, case))+
  geom_col(fill="brown", alpha=0.5)+
  theme_bw() +
  # labs(x="", y="Symptomatic case") +
   labs(x="", y="일별 유열자 수") +
  facet_wrap(~province, scales = "free_y",)
p

# ggsave(paste0("plots/daily_fever_region_", tstamp(), ".png"), p, width=3.4*3, height=2.7*3)

시기별 (월별), 지역별 기술 분석을 위해 자료 변형

# by region and month
df$month <- ifelse(df$date < as.Date("2022-06-01"), "May", ifelse(df$date < as.Date("2022-06-30"), "June", "July")) 
df %>%
  group_by(province, month) %>%
  summarize(recovered = sum(`당일 완쾌자수`, na.rm=T), 
            deaths = sum(`당일 사망자 수`, na.rm=T),
            inf = recovered + deaths) -> df_region_month
df_region_month <- df_region_month[order(df_region_month$inf, decreasing=T),]

지역별 발병률 (attack rate)

df %>%
  group_by(province) %>%
  summarize(recovered = sum(`당일 완쾌자수`, na.rm=T), 
            deaths = sum(`당일 사망자 수`, na.rm=T),
            inf = recovered + deaths) -> df_prov 
                    
df_prov$Province_Korean = df_prov$province

# 2008 census data
popdata <- fread("inst/extdata/census_2008.csv")
popdata$province <- c("양강","함북","함남","강원","자강","평북","평남","황북","황남","평양","남포")
pop <- popdata[,c("Total", "province")]

df_prov <- left_join(df_prov, pop, by="province")
df_prov$attack_rate = 100 * df_prov$inf / df_prov$Total

# 2008 census does not provide population size for 개성 and 나선 and we include them into 황해북도, 함경남도, respectively.
# 
# 개성 = 황해북도 https://namu.wiki/w/%EA%B0%9C%EC%84%B1%EC%8B%9C
# 나선 = 함경북도 https://namu.wiki/w/%EB%9D%BC%EC%84%A0%EC%8B%9C?from=%EB%82%98%EC%84%A0%EC%8B%9C
df_prov[df_prov$province == "황북","inf"] = df_prov[df_prov$province == "황북","inf"] +  df_prov[df_prov$province == "개성","inf"] 
df_prov[df_prov$province == "함북","inf"] = df_prov[df_prov$province == "함북","inf"] +  df_prov[df_prov$province == "나선","inf"]
df_prov$attack_rate = 100 * df_prov$inf / df_prov$Total

지역별 발병율 지도에 표기하기

dprk <- st_read("inst/extdata/gadm41_PRK_shp/gadm41_PRK_1.shp")
## Reading layer `gadm41_PRK_1' from data source 
##   `G:\My Drive\Projects\COVID19NorthKorea\inst\extdata\gadm41_PRK_shp\gadm41_PRK_1.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 14 features and 11 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: 124.1824 ymin: 37.67598 xmax: 130.6744 ymax: 43.00605
## Geodetic CRS:  WGS 84
dprk$name_kor = c("자강","함북","함남","황북","황남","개성","강원","강원","평북","평남","평양","나선","양강","평북")
dprk$AR = NA

nm = dprk$name_kor
for (n in nm){
  dprk[dprk$name_kor == n,]$AR = df_prov[df_prov$province == n,]$attack_rate
}
dprk[dprk$name_kor  == "개성",]$AR =
  df_prov[df_prov$province == "황북",]$attack_rate
dprk[dprk$name_kor  == "나선",]$AR =
  df_prov[df_prov$province == "함북",]$attack_rate

library(RColorBrewer)
p <- ggplot(dprk) +
  geom_sf(aes(fill=AR)) +
  scale_fill_gradientn(colors=brewer.pal(9, "YlOrBr"), name="Attack rate (%)")+
  coord_sf()+
  theme_map(legend_position = c(0.96, 0.3)) +
  theme(legend.title = element_text(size=12),
        legend.text = element_text(size=12))
p

지역별 인구밀도

지역별 인구밀도는 2008년 인구조사 (census)에 기반한 인구수를 지도 (shapefile)에 기반한 면적 (raster::area or sf::st_area 함수 사용)로 나누어 계산한다. 평방킬로미터당 인구수로 표현한다.

nms_eng = dprk$NAME_1
area_df <- data.frame(province_eng = nms_eng)
area_df$area_sqkm <- rep(NA, length(nms_eng))
# raster package approach
# for (i in 1:length(nms_eng)) {
#   area_df$area_sqkm[i] <- raster::area(as(dprk[dprk$NAME_1 == nms_eng[i],], "Spatial"))/1e6
# }
for (i in 1:length(nms_eng)) {
  area_df$area_sqkm[i] <- st_area(dprk[dprk$NAME_1 == nms_eng[i],])/1e6
}

popdata$province_eng <- admin1_dprk_to_eng(popdata$Province)
pop <- popdata[,c("Total", "province", "province_eng")]
area_df <- left_join(area_df, pop, by="province_eng")
names(area_df) <- c("province_eng", "area_sqkm", "pop", "province")
area_df$pop_den <- round(area_df$pop / area_df$area_sqkm)

# "Kaesŏng" was combined with "Hwanghae-bukto" to be consistent
area_1 <- data.frame(province_eng = paste0(area_df$province_eng[4], "_", area_df$province_eng[6]))
area_1$area_sqkm <- area_df$area_sqkm[4] + area_df$area_sqkm[6]
area_1$pop <- area_df$pop[4]
area_1$pop_den <- area_1$pop/ area_1$area_sqkm
# "Rasŏn" was combined with "Hamgyŏng-bukto"
area_2 <- data.frame(province_eng = paste0(area_df$province_eng[2], "_", area_df$province_eng[12]))
area_2$area_sqkm <- area_df$area_sqkm[2] + area_df$area_sqkm[12]
area_2$pop <- area_df$pop[2]
area_2$pop_den <- area_2$pop/ area_2$area_sqkm

area_df$pop_den[4] <- area_1$pop_den
area_df$pop_den[6] <- area_1$pop_den
area_df$pop_den[2] <- area_2$pop_den
area_df$pop_den[12] <- area_2$pop_den

지역별 인구밀도 지도로 나타내기

dprk <- st_read("inst/extdata/gadm41_PRK_shp/gadm41_PRK_1.shp")
## Reading layer `gadm41_PRK_1' from data source 
##   `G:\My Drive\Projects\COVID19NorthKorea\inst\extdata\gadm41_PRK_shp\gadm41_PRK_1.shp' 
##   using driver `ESRI Shapefile'
## Simple feature collection with 14 features and 11 fields
## Geometry type: MULTIPOLYGON
## Dimension:     XY
## Bounding box:  xmin: 124.1824 ymin: 37.67598 xmax: 130.6744 ymax: 43.00605
## Geodetic CRS:  WGS 84
dprk$pop_density = NA
# area_df computed in the previous code block
for (n in dprk$NAME_1){
  dprk[dprk$NAME_1 == n,]$pop_density = area_df[area_df$province_eng  == n,]$pop_den
}
dprk$log_pop_density = log(dprk$pop_density)

library(RColorBrewer)
p <- ggplot(dprk) +
  geom_sf(aes(fill=pop_density)) +
  scale_fill_gradientn(trans="log10", colors=brewer.pal(9, "YlOrBr"), name="Population density \n(per sq. km)")+
  coord_sf()+
  theme_map(legend_position = c(0.96, 0.3)) +
  theme(legend.title = element_text(size=12),
        legend.text = element_text(size=12))
p

# Grey color indicates the areas of no information 
# ggsave(paste0("plots/popden_", tstamp(), ".png"), p, width=3.4*2, height=2.7*2)

발병율과 인구 밀도 상관관계 분석

df <- left_join(df_prov, area_df, by="province")
df$log_pop_den <- log(df$pop_den)
cor.test(df$pop_den, df$attack_rate)
## 
##  Pearson's product-moment correlation
## 
## data:  df$pop_den and df$attack_rate
## t = 1.8582, df = 8, p-value = 0.1002
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.1231105  0.8758947
## sample estimates:
##       cor 
## 0.5490767
cor.test(df$log_pop_den, df$attack_rate)
## 
##  Pearson's product-moment correlation
## 
## data:  df$log_pop_den and df$attack_rate
## t = 1.2889, df = 8, p-value = 0.2335
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  -0.2909136  0.8280905
## sample estimates:
##       cor 
## 0.4146658
library(ggplot2)
p <- ggplot(df,aes(pop_den, attack_rate)) +
  geom_point()+
  geom_smooth(method="lm", level=0.95) +
  labs(x="Population density (per sq. km)", y="Attack rate (%)") +
  theme_bw() +
  theme(legend.title = element_blank(),
        legend.position = "bottom",
        text = element_text(size=16),
        axis.text = element_text(size=13),
        legend.text=element_text(size=13))
p

# ggsave(paste0("plots/ar_popden_", tstamp(), ".png"), p, width=3.4*2, height=2.7*2)

# library(ggplot2)
# p <- ggplot(df,aes(log_pop_den, attack_rate)) +
#   geom_point()+
#   geom_smooth(method="lm", level=0.95) +
#   labs(x="Population density (per sq. km)", y="Attack rate (%)") +
#   theme_bw() +
#   theme(legend.title = element_blank(),
#         legend.position = "bottom",
#         text = element_text(size=16),
#         axis.text = element_text(size=13),
#         legend.text=element_text(size=13))
# p
# ggsave(paste0("plots/ar_logpopden_", tstamp(), ".png"), p, width=3.4*2, height=2.7*2)

사망자수 및 치명률 (case fatality ratio)

노동시문 자료에 기반하여 사망자수와 치명률을 계산한다. 그리고, 코로나19 오미크론변이의 치명률에 사망률에 기반하여 예측되는 사망자수를 계산하여 본다. 오미크론 변이의 치명률은 세계 여러나라의 치명률 자료를 이용 메타분석을 실시한 연구에 기반하였다.

d = readRDS("inst/extdata/covid_overall_20230122.rds")
x = tail(d$cumul_deaths, 1) # total deaths
n = tail(d$cumul_recovered,1) + tail(d$cumul_deaths, 1) # total cases

# 1.  Wang C, Liu B, Zhang S, Huang N, Zhao T, Lu Q-B, et al. Differences in incidence and fatality of COVID-19 by SARS-CoV-2 Omicron variant versus Delta variant in relation to vaccine coverage: A world-wide review. Journal of Medical Virology. 2023;95: e28118. doi:10.1002/jmv.28118
# 3.04 (IQR: 1.87–7.48) per 1,000
cfr_omicron = 3.04/1000
x_varied = 0:100
df1 = data.frame(x=x_varied, prob=dbinom(x=x_varied, size=n, prob=cfr_omicron))

x_varied2 = seq(14000, 15000, by=1)
df2 = data.frame(x=x_varied2, prob=dbinom(x=x_varied2, size=n, prob=cfr_omicron))

library(ggplot2)
p1 <- ggplot(df1) +
  geom_col(aes(x=x, y=prob), fill="brown") +
  geom_point(aes(74, dbinom(x, size=n, prob=cfr_omicron)),
             shape=8, size=1, stroke=1, col="blue")+
  scale_y_continuous(limits=c(0,4e-3))+
  labs(x="", y="Probability")+
  theme_minimal()+
  theme(axis.title.x = element_blank(),
        plot.margin = unit(c(5.5,-2.5,5.5,5.5),"pt"))

p2 <- ggplot(df2)+
  geom_col(aes(x=x, y=prob), fill="brown") +
  scale_y_continuous(limits=c(0,4e-3))+
  labs(x="", y="")+
  theme_minimal()+
  theme(axis.title.x = element_blank(),
        axis.ticks.y=element_blank(),
        axis.text.y=element_blank(),
        plot.margin = unit(c(5.5,5.5,5.5,-2.5),"pt"))

library(ggplot2)
library(gridExtra)
p <- grid.arrange(
  grobs=list(p1, p2),
  nrow=1, 
  widths = c(1,2),
  bottom = "Expected death")

p
## TableGrob (2 x 2) "arrange": 3 grobs
##   z     cells    name                grob
## 1 1 (1-1,1-1) arrange      gtable[layout]
## 2 2 (1-1,2-2) arrange      gtable[layout]
## 3 3 (2-2,1-2) arrange text[GRID.text.936]

중환자수

중환자수는 대한민국의 백신 미접종자의 중증화율 통계에 기반하였다.

## 한국 중증화율 백신 미접종자의 경우 1.11%
# https://www.korea.kr/briefing/pressReleaseView.do?newsId=156498586
# 
# Expected severe cases distribution
# 방역당국이 정의한 코로나 위중증 환자는 고유량 산소요법, 인공호흡기, 
# 체외막산소공급
prop_severe_omicron = 0.0111
m <- prop_severe_omicron * n 

x_varied = seq(50000, 55000, by=1)

df = data.frame(x=x_varied, prob=dbinom(x=x_varied, size=n, prob=prop_severe_omicron))

library(ggplot2)
p <- ggplot(df) +
  geom_col(aes(x=x, y=prob), fill="steelblue") +
  scale_y_continuous()+
  labs(x="", y="Probability")+
  theme_bw()
p

무증상수를 감안한 예상 감염자수 및 롱코비드 예상 환자

감염자 중 무증상자의 비율은 오미크론변이의 무증상자 비율의 메타 분석 논문을 이용하였다.

d <- readRDS("inst/extdata/covid_overall_20230122.rds")
deaths <- tail(d$cumul_deaths, 1) # deaths
cases = tail(d$cumul_recovered,1) + tail(d$cumul_deaths, 1) # total cases
parm <- initialize_params()
# proportion of asymptomatic infections
parm$fA 
## [1] 0.255
expected_inf = cases/(1-parm$fA)
expected_inf / parm$population
## [1] 0.2493077

예상 롱코비드 환자수 계산

# 코로나 환자의 43~87% Long COVID 경험
cat(paste0(round(cases * 0.430), ", ", round(cases * 0.870)), "\n")
## 2052310, 4152347
# Long COVID for 0-14 yo
cases_kids <- cases * 0.191
# 기존 문헌에서 제시한 코로나 총환자 대비 소아청소년 만성코로나19 증후군 환자의 비율을(15%~25%) 적용
cat(paste0(round(cases_kids * 0.150), ", ", round(cases_kids * 0.250)), "\n")
## 136741, 227902
# <표 3-10>
cat(paste0(round(cases_kids * 0.044), ", ", round(cases_kids * 0.582)), "\n") 
## 40111, 530555

수리모형

일별 유열자

# cleaned dataset 
d = readRDS("inst/extdata/covid_overall_20230122.rds")
obs <- c(d$symptomatic)
# PARAMETERS is a global variable that is used in update_params, incidence, etc.
PARAMETERS <- initialize_params(tau=0.1, obs_length=length(obs))
fit = readRDS("outputs/fit_20230527.rds")
parm = fit$optim$bestmem
set.seed(1)
y <- incidence(pars=parm)
dat1 = data.frame(date=seq(from=d$date[1], by="1 day",
                           length.out=length(obs)), obs=obs)
mod1 = data.frame(date=rev(seq(from=tail(dat1$date,1)-1, by="-1 day",
                               length.out=nrow(y))), 
                  val = y[,1])

sb <- scales::alpha(c("steelblue"), alpha = c(0.6, 0.55, 1.0)) # symptomatic
br <- scales::alpha(c("brown"), alpha = c(0.6)) # data
gr <- scales::alpha(c("darkgreen"), alpha = c(0.2, 0.55, 0.9)) # infection

p <- ggplot(mod1, aes(x=date)) +
  geom_col(data=dat1, aes(x=date, y=obs), fill=br[1], inherit.aes=F) +
  geom_line(aes(y=val, color="50%"), linewidth=1.5, color=sb[3])+
  labs(x="", y="Daily symptomatic case") +
  scale_x_date(date_breaks="2 weeks", date_labels="%Y-%m-%d",
               limits=c(min(mod1$date), max(dat1$date)))+
  theme_bw()+
  theme(axis.text.x=element_text(angle=60, hjust=1))+
  theme(legend.position=c(0.8,0.5))
p

일별 유열자 및 감염자

# cleaned dataset 
d = readRDS("inst/extdata/covid_overall_20230122.rds")
obs <- c(d$symptomatic)
# PARAMETERS is a global variable that is used in update_params, incidence, etc.
PARAMETERS <- initialize_params(tau=0.1, obs_length=length(obs))
fit = readRDS("outputs/fit_20230527.rds")
parm = fit$optim$bestmem
set.seed(1)
y <- incidence(pars=parm, state=c("cumul_infected", "cumul_symptomatic"))
dat1 = data.frame(date=seq(from=d$date[1], by="1 day",
                           length.out=length(obs)), obs=obs)
mod1 = data.frame(date=rev(seq(from=tail(dat1$date,1)-1, by="-1 day",
                               length.out=nrow(y))), 
                  cumul_infected = y[,1],
                  cumul_symptomatic = y[,2])

sb <- scales::alpha(c("steelblue"), alpha = c(0.6, 0.55, 1.0)) # symptomatic
br <- scales::alpha(c("brown"), alpha = c(0.6)) # data
gr <- scales::alpha(c("darkgreen"), alpha = c(0.2, 0.55, 0.9)) # infection

p <- ggplot(mod1, aes(x=date)) +
  geom_col(data=dat1, aes(x=date, y=obs), fill=br[1], inherit.aes=F) +
  geom_line(aes(y=cumul_infected, color="Infected"), linewidth=1)+
  geom_line(aes(y=cumul_symptomatic, color="Symptomatic"), linewidth=1)+
  scale_color_manual("", values=c("Infected"=gr[3], "Symptomatic"=sb[3]))+
  scale_x_date(date_breaks="2 weeks", date_labels="%Y-%m-%d",
               limits=c(min(mod1$date), max(dat1$date)))+
  theme_bw()+
  labs(x="", y="Daily case") +
  theme(axis.text.x=element_text(angle=60, hjust=1))+
  theme(legend.position=c(0.8,0.5))
p

확률론적 모형

유열자

set.seed(42)
d = readRDS("inst/extdata/covid_overall_20230122.rds")
# case_before <- d$cumul_recovered[1] + d$cumul_deaths[1] - d$symptomatic[1] 
obs <- d$symptomatic
# PARAMETERS is a global variable used in other functions (eg, update_params, 
# incidence,)
PARAMETERS <- initialize_params(tau=0.1, obs_length=length(obs))
# Day 1 and Day 2 are integers
fit = readRDS("outputs/fit_20230527.rds")
parm = fit$optim$bestmem

# stochastic model
PARAMETERS$model <- seapird_tauleap
# PARAMETERS$symptomatic <- 2

nrun = 1000
set.seed(1)
y <- incidence(pars=parm)
m = matrix(NA, nrow=nrow(y), ncol=nrun)
m[,1] = y[,1]
for (i in 2:nrun) {
  set.seed(i)
  y <- incidence(pars=parm)
  m[,i] = y[,1]  
}
# plot only those with at least two cases
# min_case = 10000
# ids <- colSums(m) > min_case
# m <- m[,ids] # select only those at least one infection has been generated
# sim = as.data.frame(t(apply(m, 1, quantile, probs=c(0.025,0.5,0.975))))
probs = c(0.025,0.5,0.975)
sim = as.data.frame(t(apply(m, 1, quantile, probs=probs)))
# sim = as.data.frame(t(apply(m, 1, quantile, probs=c(0.25,0.5,0.75))))
# colSums(sim)
## the first day represents the cumulative cases occurred before the first reporting 
dat1 = data.frame(date=seq(from=d$date[1], by="1 day",
                           length.out=length(obs)), obs=obs)
mod1 = data.frame(date=rev(seq(from=tail(dat1$date,1)-1, by="-1 day",
                               length.out=nrow(m))))
mod1 <- cbind(mod1, sim)
names(mod1) <- c("date","lower","med","upper")
# mx = max(c(dat1$obs, mod1$`97.5%`), na.rm=T)

sb <- scales::alpha(c("steelblue"), alpha = c(0.6, 0.55, 1.0)) # symptomatic
br <- scales::alpha(c("brown"), alpha = c(0.6)) # data
gr <- scales::alpha(c("darkgreen"), alpha = c(0.2, 0.55, 0.9)) # infection

p <- ggplot(mod1, aes(x=date)) +
  geom_ribbon(aes(ymax=upper,ymin=lower, fill="95% interval"))+
  geom_col(data=dat1, aes(x=date, y=obs, fill="Data"),
           inherit.aes = F) +
  geom_line(aes(y=med, color="50%"), linewidth=1.5) +
  scale_fill_manual("", values=c("95% interval"=sb[1], "Data"=br))+
  scale_color_manual("", values=c("50%"=sb[3]))+
  labs(x="", y="Daily symptomatic case") +
  scale_x_date(date_breaks="2 weeks", date_labels="%Y-%m-%d",
               limits=c(min(mod1$date), max(dat1$date)))+
  theme_bw()+
  theme(axis.text.x=element_text(angle=60, hjust=1))+
  theme(legend.position=c(0.8,0.5))
p

# ggsave(paste0("plots/stoch_fever_inc_", tstamp(), ".png"), p, width=3.4*2, height=2.7*2)

유열자 및 감염자

set.seed(42)
d = readRDS("inst/extdata/covid_overall_20230122.rds")
# case_before <- d$cumul_recovered[1] + d$cumul_deaths[1] - d$symptomatic[1] 
obs <- d$symptomatic
# PARAMETERS is a global variable used in other functions (eg, update_params, 
# incidence,)
PARAMETERS <- initialize_params(tau=0.1, obs_length=length(obs))
# Day 1 and Day 2 are integers
fit = readRDS("outputs/fit_20230527.rds")
parm = fit$optim$bestmem

# stochastic model
PARAMETERS$model <- seapird_tauleap
# PARAMETERS$symptomatic <- 2

nrun = 1000
set.seed(1)
y <- incidence(pars=parm, state=c("cumul_infected", "cumul_symptomatic"))
m2 <- m1 <- matrix(NA, nrow=nrow(y), ncol=nrun)
m1[,1] = y[,1]
m2[,1] = y[,2]
for (i in 2:nrun) {
  set.seed(i)
  y <- incidence(pars=parm, state=c("cumul_infected", "cumul_symptomatic"))
  m1[,i] = y[,1]
  m2[,i] = y[,2]
}
# plot only those with at least two cases
# min_case = 10000
# ids <- colSums(m) > min_case
# m <- m[,ids] # select only those at least one infection has been generated
probs = c(0.025,0.5,0.975)
sim1 = as.data.frame(t(apply(m1, 1, quantile, probs=probs)))
sim2 = as.data.frame(t(apply(m2, 1, quantile, probs=probs)))
# sim = as.data.frame(t(apply(m, 1, quantile, probs=c(0.25,0.5,0.75))))
# colSums(sim)
## the first day represents the cumulative cases occurred before the first reporting 
dat = data.frame(date=seq(from=d$date[1], by="1 day",
                           length.out=length(obs)), obs=obs)
mod = data.frame(date=rev(seq(from=tail(dat$date,1)-1, by="-1 day",
                               length.out=nrow(m))))
mod <- cbind(mod, sim1, sim2)
names(mod) <- c("date","lower","med","upper","lower_symp","med_symp","upper_symp")
# mx = max(c(dat1$obs, mod1$`97.5%`), na.rm=T)

sb <- scales::alpha(c("steelblue"), alpha = c(0.5, 0.55, 1.0)) # symptomatic
br <- scales::alpha(c("brown"), alpha = c(0.5)) # data
gr <- scales::alpha(c("darkgreen"), alpha = c(0.5, 0.55, 0.9)) # infection

p <- ggplot(mod, aes(x=date)) +
  geom_ribbon(aes(ymax=upper, ymin=lower, fill="Infected (95% interval)"))+
  geom_ribbon(aes(ymax=upper_symp, ymin=lower_symp, fill="Symptomatic (95% interval)"))+
  geom_col(data=dat, aes(x=date, y=obs, fill="Data"),
           inherit.aes = F) +
  geom_line(aes(y=med, color="Infected (50%)"), linewidth=1.5) +
  geom_line(aes(y=med_symp, color="Symptomatic (50%)"), linewidth=1.5) +
  scale_fill_manual("", values=c("Symptomatic (95% interval)"=sb[1],
                                 "Infected (95% interval)"=gr[1],
                                 "Data"=br))+
  scale_color_manual("", values=c("Infected (50%)"=gr[3], "Symptomatic (50%)"=sb[3]))+
  labs(x="", y="Daily symptomatic case") +
  scale_x_date(date_breaks="2 weeks", date_labels="%Y-%m-%d",
               limits=c(min(mod$date), max(dat$date)))+
  theme_bw()+
  theme(axis.text.x=element_text(angle=60, hjust=1))+
  theme(legend.position=c(0.7,0.5))
p

# ggsave(paste0("plots/stoch_infection_fever_inc_", tstamp(), ".png"), p, width=3.4*2, height=2.7*2)

COVID-19관련 세계 및 북한 데이터를 시각화

## North Korea data (노동신문)
# 데이터 가져오기
summary_dates_labor <- read_excel("inst/extdata/(2022-0811)_코로나19_노동신문_보도_현황표_전체_일일유열자 2.xlsx")
names(summary_dates_labor) <- c("기준일", "신규 유열자(노동신문)", "완쾌자(노동신문)", "사망자(노동신문)")

# 신규 유열자의 백만 명당 발생 비율 계산
# New Cases per Million = (New Cases / Population) * 1,000,000
summary_dates_labor <- summary_dates_labor %>% 
  mutate ("new_cases_per_million" = (`신규 유열자(노동신문)` / 25697258) * 1000000)
# estimated number of population in 2022; 25,697,258
# reference: KOSIS (https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_IZGA01_002&vw_cd=MT_BUKHAN&list_id=101_101BUKHANB12&scrId=&seqNo=&lang_mode=ko&obj_var_id=&itm_id=&conn_path=MT_BUKHAN&path=%252FstatisticsList%252FstatisticsListIndex.do)

## World data (세계 데이터)
# 데이터 가져오기
data_other_countries <- read_csv("data/owid-covid-data_nighbouring-countries.csv")

# 데이터 정리
df_dates <- data_other_countries %>% # 2020-01-03 / 2023-07-05
  group_by(location) %>%
  summarize(initial_record_date   = min(date[!is.na(new_cases_per_million)]),
            final_record_date     = max(date[!is.na(new_cases_per_million)]))

location_na <- data_other_countries %>%
  filter(date == "2021-01-03" & is.na(new_cases_per_million)) %>%
  select(location)

data_other_countries <- data_other_countries %>%
  filter(!location %in% location_na$location,
         !(location %in% c("Macao", "Northern Cyprus")))

df_do <- data_other_countries %>%
  filter(date <= as.Date("2023-06-30"))

# 결측치 확인 후 0으로 대체
# na_rows_c <- df_do[is.na(df_do$new_cases_per_million), ]
# na_rows_d <- df_do[is.na(df_do$new_deaths_per_million), ]
df_do <- df_do %>%
  mutate_at(vars(new_deaths_per_million, new_cases_per_million), ~replace_na(., 0))
df_do$iso_code[df_do$iso_code == "OWID_KOS"] <- "XK"

  #-----------------------------------------------------------------------
## 노동신문 데이터와 병합
# "North Korea" 지역의 행 선택
df_do_filtered <- df_do %>%
  filter(location == "North Korea")

# 'date' 열을 기준으로 summary_dates_labor와 조인
df_nk <- df_do_filtered %>%
  left_join(summary_dates_labor, by = c("date" = "기준일"))

# 'new_cases_per_million' 열을 summary_dates_labor에서 가져와 업데이트
df_nk <- df_nk %>%
  mutate(new_cases_per_million = ifelse(!is.na(new_cases_per_million.y), new_cases_per_million.y, new_cases_per_million.x)) %>%
  select(-c(new_cases_per_million.x, new_cases_per_million.y))

# 업데이트된 결과를 원래 df_do와 결합
df_do <- bind_rows(
  df_do %>%
    filter(location != "North Korea"), # Exclude North Korea rows
  df_nk)

#-----------------------------------------------------------------------
# 다른 국가들의 Covid 케이스 및 사망자에 대한 테이블 생성

# 테이블 생성
df_do_year <- df_do %>%
  mutate(year = year(date)) %>%
  group_by(iso_code, continent, location, year) %>%
  summarise(new_cases_per_million = sum(new_cases_per_million),
           new_deaths_per_million = sum(new_deaths_per_million),
            .groups = 'drop')

# 연도별 백만명당 신규 케이스  
df_new_cases <- df_do_year %>%
  select(-new_deaths_per_million) %>%
  pivot_wider(names_from = year,
              values_from = new_cases_per_million) %>%
  rename_with(~paste0(., "_new_cases_per_million"), .cols = -c(1:3))

# 연도별 백만명당 신규 사망 케이스 
df_new_deaths <- df_do_year %>%
  select(-new_cases_per_million) %>%
  pivot_wider(names_from = year,
              values_from = new_deaths_per_million) %>%
  rename_with(~paste0(., "_new_deaths_per_million"), .cols = -c(1:3))

# 업데이트된 테이블 결합
df_combined <- left_join(df_new_cases, df_new_deaths, by = c("iso_code", "continent", "location"))

# OWID 데이터
df_OWID <- df_combined[grep("^OWID", df_combined$iso_code), ]
df_countries <- df_combined[!grepl("^OWID", df_combined$iso_code), ]
head(df_countries)
## # A tibble: 6 × 11
##   iso_code continent     location  2020_new_cases_per_m…¹ 2021_new_cases_per_m…²
##   <chr>    <chr>         <chr>                      <dbl>                  <dbl>
## 1 ABW      North America Aruba                     50470.                128697.
## 2 AFG      Asia          Afghanis…                  1272.                  2571.
## 3 AGO      Africa        Angola                      490.                  1668.
## 4 AIA      North America Anguilla                    819.                104617.
## 5 ALB      Europe        Albania                   20105.                 53391.
## 6 AND      Europe        Andorra                   99984.                189610.
## # ℹ abbreviated names: ¹​`2020_new_cases_per_million`,
## #   ²​`2021_new_cases_per_million`
## # ℹ 6 more variables: `2022_new_cases_per_million` <dbl>,
## #   `2023_new_cases_per_million` <dbl>, `2020_new_deaths_per_million` <dbl>,
## #   `2021_new_deaths_per_million` <dbl>, `2022_new_deaths_per_million` <dbl>,
## #   `2023_new_deaths_per_million` <dbl>
# CSV 파일로 저장
# write.csv(df_countries, "outputs/df_countries.csv", row.names = FALSE)

NK 데이터가 있는 기간 동안의 Covid 사례 및 사망자에 대한 테이블 생성

# 2022-05-12부터 2022-08-09까지의 데이터 선택
# 테이블 생성
df_do_year_NKperiod <- df_do %>%
   filter(date >= as.Date("2022-05-12") & date <= as.Date("2022-08-09")) %>%
  mutate(year = year(date)) %>%
  group_by(iso_code, continent, location, year) %>%
  summarise(new_cases_per_million = sum(new_cases_per_million),
           new_deaths_per_million = sum(new_deaths_per_million),
            .groups = 'drop')

# 연도별 백만명당 신규 케이스
df_new_cases_NKperiod <- df_do_year_NKperiod %>%
  select(-new_deaths_per_million) %>%
  pivot_wider(names_from = year,
              values_from = new_cases_per_million) %>%
  rename_with(~paste0(., "_new_cases_per_million"), .cols = -c(1:3))

# 연도별 백만명당 신규 사망
df_new_deaths_NKperiod <- df_do_year_NKperiod %>%
  select(-new_cases_per_million) %>%
  pivot_wider(names_from = year,
              values_from = new_deaths_per_million) %>%
  rename_with(~paste0(., "_new_deaths_per_million"), .cols = -c(1:3))

df_combined_NKperiod <- left_join(df_new_cases_NKperiod, df_new_deaths_NKperiod, 
                         by = c("iso_code", "continent", "location"))

# OWID
df_OWID_NKperiod <- df_combined_NKperiod[grep("^OWID", df_combined_NKperiod$iso_code), ]
df_countries_NKperiod <- df_combined_NKperiod[!grepl("^OWID", df_combined_NKperiod$iso_code), ]

head(df_countries_NKperiod)
## # A tibble: 6 × 5
##   iso_code continent     location  2022_new_cases_per_m…¹ 2022_new_deaths_per_…²
##   <chr>    <chr>         <chr>                      <dbl>                  <dbl>
## 1 ABW      North America Aruba                    65302.                 132.   
## 2 AFG      Asia          Afghanis…                  210.                   1.62 
## 3 AGO      Africa        Angola                      93.0                  0.477
## 4 AIA      North America Anguilla                 40058.                  63.0  
## 5 ALB      Europe        Albania                  14639.                  22.2  
## 6 AND      Europe        Andorra                  51050.                  12.5  
## # ℹ abbreviated names: ¹​`2022_new_cases_per_million`,
## #   ²​`2022_new_deaths_per_million`
# CSV 파일로 저장
# write.csv(df_countries_NKperiod, "outputs/df_countries_NKperiod.csv", row.names = FALSE)

100만명 당 환자수 박스플롯

전 세계

# 글로벌
ggplot(data = df_countries, aes(x = "", y = `2022_new_cases_per_million`)) +
  geom_boxplot() +
  scale_y_continuous(labels = function(x) format(x, scientific = FALSE)) +
  theme_bw() +
  labs(title = "전 세계 100만명 당 신규 환자 (2022년)",
       y = "",
       x = "전세계")

대륙별

ggplot(data = df_countries, aes(x = continent, y = `2022_new_cases_per_million`)) +
  geom_boxplot() +
  scale_y_continuous(labels = function(x) format(x, scientific = FALSE)) +
  theme_bw() +
  labs(title = "대륙별 100만명 당 신규 환자 (2022년)",
       y = "",
       x = "")

지리적으로 북한과 가깝고 체저가 유사한 나라를 골라서 북한과 비교

# 주변 국가와의 비교 (2022)
df_ordered <- df_countries[order(df_countries$`2022_new_cases_per_million`, decreasing=T),]
head(df_ordered)
## # A tibble: 6 × 11
##   iso_code continent     location  2020_new_cases_per_m…¹ 2021_new_cases_per_m…²
##   <chr>    <chr>         <chr>                      <dbl>                  <dbl>
## 1 BRN      Asia          Brunei                      350.                 34113.
## 2 SPM      North America Saint Pi…                  2719.                 13934.
## 3 KOR      Asia          South Ko…                  1172.                 11088.
## 4 FRO      Europe        Faeroe I…                 11446.                 97163.
## 5 CYP      Europe        Cyprus                    24941.                155615.
## 6 AUT      Europe        Austria                   39449.                102003.
## # ℹ abbreviated names: ¹​`2020_new_cases_per_million`,
## #   ²​`2021_new_cases_per_million`
## # ℹ 6 more variables: `2022_new_cases_per_million` <dbl>,
## #   `2023_new_cases_per_million` <dbl>, `2020_new_deaths_per_million` <dbl>,
## #   `2021_new_deaths_per_million` <dbl>, `2022_new_deaths_per_million` <dbl>,
## #   `2023_new_deaths_per_million` <dbl>
# Brunei: as of 2020 the country had a population of 460,345 according to the Wikipedia (https://en.wikipedia.org/wiki/Brunei)
# Saint Pierre and Miquelona: population of 6,008 as of the March 2016 census (https://en.wikipedia.org/wiki/Saint_Pierre_and_Miquelon)

지리적으로 북한과 가깝고 체저가 유사한 나라를 골라서 북한과 비교 플롯

# "North Korea", "South Korea", "Russia", "China", "Mongolia", "Vietnam", "Cuba" 국가값을 선택
df_selected <- df_countries[df_countries$location %in% c("North Korea", "South Korea", "Russia", "China", "Mongolia", "Vietnam", "Cuba"), ]

# 2022년 백만 명당 신규 케이스에 대한 박스플롯을 생성
p1 <-ggplot(data = df_countries, aes(x = "", y = `2022_new_cases_per_million`)) +
  geom_boxplot() +
  geom_point(data = df_selected, 
             aes(x = "", y = `2022_new_cases_per_million`, 
                 fill = location, shape = location), 
             position = position_jitterdodge(jitter.width = 0.2, dodge.width = 0.5),
             color = "black", size = 3) +
  scale_y_continuous(labels = function(x) format(x, scientific = FALSE)) +
  labs(title = "2022 New Cases per Million",
       y = "New Cases per Million",
       x = "Global") +
  theme_bw() +
  scale_fill_manual(values = c("North Korea" = "orange", "South Korea" = "darkblue", 
                               "Russia" = "darkgreen", "China" = "red", 
                               "Mongolia" = "skyblue", "Vietnam" = "purple", "Cuba" = "brown")) +
  scale_shape_manual(values = c("North Korea" = 21, "South Korea" = 22, 
                                "Russia" = 23, "China" = 24, 
                                "Mongolia" = 25, "Vietnam" = 20, "Cuba" = 4)) +
  theme(legend.position = "right")

p1  

# 그래프를 파일로 저장 ([그림] 주변 국가와의 비교 (2022))
# ggsave("plots/plot_boxplot_2022period.png", plot = p1)

북한 자료가 있는 5-7월 기간 동안 백만 명당 신규 사례에 대한 박스 플롯 생성

df_countries_NKperiod_ordered <- df_countries_NKperiod[order(df_countries_NKperiod$`2022_new_cases_per_million`, decreasing=T),]
head(df_countries_NKperiod_ordered)
## # A tibble: 6 × 5
##   iso_code continent     location  2022_new_cases_per_m…¹ 2022_new_deaths_per_…²
##   <chr>    <chr>         <chr>                      <dbl>                  <dbl>
## 1 FLK      South America Falkland…                382794.                    0  
## 2 NRU      Oceania       Nauru                    362383.                   78.8
## 3 PRK      Asia          North Ko…                172799.                    0  
## 4 BRN      Asia          Brunei                   166242.                   60.1
## 5 MTQ      North America Martiniq…                160289.                  237. 
## 6 MSR      North America Montserr…                141627.                 1360. 
## # ℹ abbreviated names: ¹​`2022_new_cases_per_million`,
## #   ²​`2022_new_deaths_per_million`
# Only two areas have higher COVID-19 incidence per 1,000,000 people: 
# Falkland Islands and Nauru. These two islands have the population sizes of 
# 3,662 (2021 census) and 10,084 (2021 census), respectively.
# 주변 국가와의 비교 (2022-05-12 – 2022-08-09)
df_selected_NKperiod <- df_countries_NKperiod[df_countries_NKperiod$location %in% c("North Korea", "South Korea", "Russia", "China", "Mongolia", "Vietnam", "Cuba"), ]

# 북한 자료의 데이터 기간 동안의 백만 명당 신규 사례에 대한 박스 플롯 생성
p2 <- ggplot(data = df_countries_NKperiod, aes(x = "", y = `2022_new_cases_per_million`)) +
  geom_boxplot() +
  geom_point(data = df_selected_NKperiod, 
             aes(x = "", y = `2022_new_cases_per_million`, 
                 fill = location, shape = location), 
             position = position_jitterdodge(jitter.width = 0.2, dodge.width = 0.6),
             color = "black", size = 3) +
  scale_y_continuous(labels = function(x) format(x, scientific = FALSE)) +
  labs(title = "New Cases per Million (2022-05-12 - 2022-08-09)",
       y = "New Cases per Million",
       x = "Global") +
  theme_bw() +
  scale_fill_manual(values = c("North Korea" = "orange", "South Korea" = "darkblue", 
                               "Russia" = "darkgreen", "China" = "red", 
                               "Mongolia" = "skyblue", "Vietnam" = "purple", "Cuba" = "brown")) +
  scale_shape_manual(values = c("North Korea" = 21, "South Korea" = 22, 
                                "Russia" = 23, "China" = 24, 
                                "Mongolia" = 25, "Vietnam" = 20, "Cuba" = 4)) +
  theme(legend.position = "right")

p2

# 그래프를 파일로 저장 ([그림] 주변 국가와의 비교 (2022-05-12 – 2022-08-09))
# ggsave("plots/plot_boxplot_NKperiod.png", plot = p2)

5월 13일 이전 유열자 반영

d = readRDS("inst/extdata/covid_overall_20230122.rds")
max_tau1 = 40

code_cp_full_NB <- nimbleCode({ 
    R0 ~ T(dnorm(7, sd = 2), 1, 30)
    R_int ~ T(dnorm(1, sd = 2), 0, 10)
    day1 ~ T(dnorm(20, sd = 10), 7, max_tau1)
    day2 ~ T(dnorm(2, sd = 2), -5, 5)
    size ~ T(dnorm(1, sd = 20), 1e-3, 1e3)
    
    mu[1:N] <- nimble_seapird(R0 = R0, 
                               R_int = R_int,
                               pop = pop,
                               inf0 = inf0,
                               report_ratio = 1.0,
                               day1 = day1,
                               day2 = day2,
                               max_tau1 = max_tau1,
                               nobs = nobs)
    for (i in 1:n) {
      y[i] ~ dnegbin(size/(size+mu[(N-nobs+i)]), size) #
    }
    # Also use the observation before May 13
    case_before ~ dnegbin(size/(size+sum(mu[1:(N-nobs)])), size)
    
    for (i in 1:N) {
      ypred[i] ~ dnegbin(size/(size+mu[i]), size) # posterior predictive
    }
})


max_tau1 = 40
nobs = 74
dend = nobs
inf0 = 1
y = d$symptomatic[1:nobs]

case_before <- d$cumul_symptomatic[1] + d$cumul_deaths[1] - d$symptomatic[1] 

PARAMETERS <- initialize_params(tau=0.1, obs_length=length(y))

const <- list(N=length(y)+max_tau1, 
              n=dend, 
              pop=PARAMETERS$population, 
              nobs=nobs,
              max_tau1=max_tau1,
              inf0=inf0)

data <- list(y=y, case_before=case_before)

inits <- list(R0=6,
              R_int=0.6,
              day1=14,
              day2=2)  

## create the model object
model <- nimbleModel(code = code_cp_full_NB,
                     constants = const,
                     data = data,
                     inits = inits,
                     check = FALSE)
  
Cmodel <- compileNimble(model)

mcmc <- buildMCMC(model, monitors=c(parm_monitor, 'ypred'))
Cmcmc <- compileNimble(mcmc, project=Cmodel)

set.seed(42)
samples <- runMCMC(Cmcmc, niter=1e5, nchains=1, thin=10)
d = readRDS("inst/extdata/covid_overall_20230122.rds")
max_tau1 = 40
nobs = 74

samples = readRDS("outputs/samples_cp_full_nb_45_20231024T10.rds")
y = d$symptomatic[1:74]
PARAMETERS <- initialize_params(tau=0.1, obs_length=length(y))

# convergence diagnostic
library(coda)
x1 = as.data.frame(samples[[1]])["R0"]
x2 = as.data.frame(samples[[2]])["R0"]
x3 = as.data.frame(samples[[3]])["R0"]
x4 = as.data.frame(samples[[4]])["R0"]
x = mcmc.list(as.mcmc(x1),as.mcmc(x2),as.mcmc(x3),as.mcmc(x4))

gelman.diag(x)
## Potential scale reduction factors:
## 
##    Point est. Upper C.I.
## R0          1       1.01
# use the first chain
chain = as.data.frame(samples[[1]])

ypreds = chain[, grepl("ypred", names(chain))]

# reduce sample size for easier analysis
nsamp = 1000
set.seed(2)
ypreds = ypreds[sample(1:nrow(ypreds), nsamp), ]        
dim(ypreds)
## [1] 1000  114
probs = c(0.025,0.25,0.5,0.75,0.975)
summ = apply(ypreds, 2, quantile, probs=probs, na.rm=T)

# total fever
tot_ypreds <- rowSums(ypreds)
quantile(tot_ypreds, probs=probs)
##    2.5%     25%     50%     75%   97.5% 
## 4610582 4841185 4953123 5080164 5312919
# case_before May 13
last_day_sim = as.Date("2023-05-13") + length(y) - 1
date = rev(seq(from=last_day_sim, by="-1 day", length.out=ncol(ypreds)))
n = sum(date < as.Date("2023-05-13")) # days before May 13
quantile(rowSums(ypreds[,1:n]), probs=probs)
##     2.5%      25%      50%      75%    97.5% 
## 194168.1 227337.2 246106.0 269246.2 312931.4
# infections
inf = ypreds / (1-PARAMETERS$fA)
quantile(rowSums(inf), probs=probs)
##    2.5%     25%     50%     75%   97.5% 
## 6188701 6498235 6648487 6819012 7131434
# deaths
deaths = ypreds * PARAMETERS$cfr
quantile(rowSums(deaths), probs=probs)
##     2.5%      25%      50%      75%    97.5% 
## 14016.17 14717.20 15057.49 15443.70 16151.27
dat = data.frame(
  # date = seq(to=as.Date("2022-05-13"), by="day", length.out=nrow(ypreds)),
  date = rev(seq(from=last_day_sim, by="-1 day", length.out=ncol(ypreds))),
  obs = c(rep(NA, max_tau1), y),
  lb = summ[1, ], 
  med = summ[3,],
  ub = summ[5, ])

sb <- scales::alpha(c("steelblue"), alpha = c(0.6, 0.55, 1.0)) # symptomatic
br <- scales::alpha(c("brown"), alpha = c(0.6)) # data
gr <- scales::alpha(c("darkgreen"), alpha = c(0.2, 0.55, 0.9)) # infection

library(ggplot2)
p <- ggplot(dat, aes(x=date)) +
  geom_ribbon(aes(ymax=ub,ymin=lb, fill="95% PPI"))+
  geom_line(aes(y=med, color="Median"), linewidth=1) +
  geom_col(aes(y=obs, fill="Data")) +
  scale_fill_manual("", values=c("95% PPI"=sb[1], 
                                 "Data"=br))+
  scale_color_manual("", values=c("Median"=sb[3]))+
  labs(x="", y="Daily symptomatic case") +
  scale_x_date(date_breaks="2 weeks", date_labels="%Y-%m-%d")+
  scale_y_continuous(labels = function(x) format(x, scientific = TRUE))+
  theme_bw()+
  theme(axis.text.x=element_text(size=13, angle=60, hjust=1), 
        text = element_text(size=16),
        axis.text = element_text(size=13),
        legend.text = element_text(size=13), 
        legend.position=c(0.85,0.8))
  
p

# ggsave(paste0("plots/cp_full_nb_rr_ppi_", dend, "_", tstamp(hour=T), ".png"), p, width=3.4*2.6, height=2.7*2.6)

모수 추정치

parm_monitor <- c('R0','R_int',"day1",'day2')

chain = chain[sample(1:nrow(chain), nsamp), ]   

for (par in parm_monitor) {
  theta = chain[, par]
  print(quantile(theta, probs=probs))
}
##     2.5%      25%      50%      75%    97.5% 
## 5.476217 6.102392 6.459084 6.863057 7.561511 
##      2.5%       25%       50%       75%     97.5% 
## 0.6409593 0.6529373 0.6586952 0.6658178 0.6780708 
##     2.5%      25%      50%      75%    97.5% 
## 29.02447 31.57239 33.14212 34.84710 38.37869 
##     2.5%      25%      50%      75%    97.5% 
## 3.335717 3.634818 3.794139 3.980971 4.374147
# date of introduction
theta = chain[, "day1"]
qnt = quantile(theta , probs=probs)
as.Date("2023-05-13") - round(qnt[c(5,3,1)])
##        97.5%          50%         2.5% 
## "2023-04-05" "2023-04-10" "2023-04-14"
# date of intervention
theta = chain[, "day2"]
qnt = quantile(theta , probs=probs)
as.Date("2023-05-13") + round(qnt[c(1,3,5)])
##         2.5%          50%        97.5% 
## "2023-05-16" "2023-05-17" "2023-05-17"

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published