Skip to content

laksh753/mcp_server

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Building an AI Agent from Scratch

This repository provides a comprehensive guide to building an AI agent from scratch. Follow this step-by-step guide to create your own intelligent agent that can perceive, reason, and act in its environment.

Table of Contents

Prerequisites

  • Python 3.8+
  • Basic understanding of:
    • Machine Learning concepts
    • Object-Oriented Programming
    • Neural Networks (optional for advanced features)
  • Required packages (will be listed in requirements.txt)

Project Structure

mcp_server/
├── src/
│   ├── agent/
│   │   ├── __init__.py
│   │   ├── core.py
│   │   ├── perception.py
│   │   ├── reasoning.py
│   │   └── action.py
│   ├── environment/
│   │   ├── __init__.py
│   │   └── world.py
│   └── utils/
│       ├── __init__.py
│       └── helpers.py
├── tests/
├── requirements.txt
└── README.md

Step 1: Setting Up the Environment

  1. Create a virtual environment:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  2. Install required packages:

    pip install numpy pandas scikit-learn torch
  3. Set up the basic project structure as shown above

Step 2: Designing the Agent Architecture

The AI agent will follow a three-layer architecture:

  1. Perception Layer

    • Processes input data
    • Converts raw data into meaningful representations
    • Implements sensors and data preprocessing
  2. Reasoning Layer

    • Processes perceived information
    • Makes decisions based on current state
    • Implements learning algorithms and decision-making logic
  3. Action Layer

    • Executes decisions
    • Interacts with the environment
    • Implements actuators and output processing

Step 3: Implementing Core Components

3.1 Basic Agent Class

class Agent:
    def __init__(self):
        self.state = {}
        self.perception_module = PerceptionModule()
        self.reasoning_module = ReasoningModule()
        self.action_module = ActionModule()

    def perceive(self, input_data):
        return self.perception_module.process(input_data)

    def think(self, perceived_data):
        return self.reasoning_module.decide(perceived_data)

    def act(self, decision):
        return self.action_module.execute(decision)

3.2 Environment Interface

class Environment:
    def __init__(self):
        self.state = {}
        self.agents = []

    def step(self):
        for agent in self.agents:
            observation = self.get_observation(agent)
            action = agent.act(observation)
            self.update_state(agent, action)

Step 4: Adding Intelligence

  1. Implement Learning Algorithms

    • Reinforcement Learning
    • Neural Networks
    • Decision Trees
    • Rule-based Systems
  2. Add Memory and State Management

    class Memory:
        def __init__(self):
            self.short_term = {}
            self.long_term = {}
    
        def remember(self, data):
            # Process and store data
            pass
    
        def recall(self, query):
            # Retrieve relevant information
            pass
  3. Implement Decision Making

    • Policy-based decisions
    • Value-based decisions
    • Model-based planning

Step 5: Testing and Optimization

  1. Unit Testing

    • Test individual components
    • Verify behavior in controlled scenarios
    • Ensure proper integration
  2. Performance Optimization

    • Profile code execution
    • Optimize resource usage
    • Implement caching where appropriate
  3. Behavior Validation

    • Test in various environments
    • Validate decision-making
    • Measure performance metrics

Advanced Features

  1. Natural Language Processing

    • Text understanding
    • Command processing
    • Language generation
  2. Computer Vision

    • Image recognition
    • Object detection
    • Scene understanding
  3. Multi-Agent Systems

    • Agent communication
    • Coordination protocols
    • Collective behavior

Contributing

We welcome contributions! Please follow these steps:

  1. Fork the repository
  2. Create a feature branch
  3. Commit your changes
  4. Push to the branch
  5. Create a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.


Next Steps

  1. Clone this repository
  2. Follow the setup instructions
  3. Start with basic implementations
  4. Gradually add more complex features
  5. Test and optimize your agent
  6. Share your results and contribute back!

For detailed implementation examples and code snippets, check the src directory in this repository.

Support

If you need help or have questions:

  • Open an issue
  • Check existing documentation
  • Join our community discussions

Happy building! 🤖✨

About

MCP Server Repository

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages