-
Notifications
You must be signed in to change notification settings - Fork 19.2k
Closed
Labels
bugRelated to a bug, vulnerability, unexpected error with an existing featureRelated to a bug, vulnerability, unexpected error with an existing feature
Description
System Info
I have retriever implementation like this
def get_vector_store(options: StoreOptions) -> VectorStore:
"""Gets the vector store for the given options."""
vector_store: VectorStore
embedding = get_embeddings()
store_type = os.environ.get("STORE")
if store_type == StoreType.QDRANT.value:
client = qdrant_client.QdrantClient(
url=os.environ["QDRANT_URL"],
prefer_grpc=True,
api_key=os.getenv("QDRANT_API_KEY", None),
)
vector_store = Qdrant(
client, collection_name=options.namespace, embeddings=embedding
)
# vector_store = Qdrant.from_documents([], embedding, url='http://localhost:6333', collection=options.namespace)
else:
raise ValueError("Invalid STORE environment variable value")
return vector_store
get-embeddings.py
return OllamaEmbeddings(base_url=f"host.docker.internal:11434", model="mistral")
knowledgebase: VectorStore = get_vector_store(StoreOptions("knowledgebase"))
async def get_relevant_docs(text: str, bot_id: str) -> Optional[str]:
try:
kb_retriever = knowledgebase.as_retriever(
search_kwargs={
"k": 3,
"score_threshold": vs_thresholds.get("kb_score_threshold"),
"filter": {"bot_id": bot_id},
},
)
result = kb_retriever.get_relevant_documents(text)
if result and len(result) > 0:
# Assuming result is a list of objects and each object has a page_content attribute
all_page_content = "\n\n".join([item.page_content for item in result])
return all_page_content
return None
except Exception as e:
logger.error(
"Error occurred while getting relevant docs",
incident="get_relevant_docs",
payload=text,
error=str(e),
)
return None
As long as i use chatgpt embeddings and chat models, i get the correct outputs. Once i switch to ollama, none of my retrievers are working.
I see the documents being ingested to qdrant, which means embeddings are working, but retrievers fail to retrieve any document
Who can help?
No response
Information
- The official example notebooks/scripts
- My own modified scripts
Related Components
- LLMs/Chat Models
- Embedding Models
- Prompts / Prompt Templates / Prompt Selectors
- Output Parsers
- Document Loaders
- Vector Stores / Retrievers
- Memory
- Agents / Agent Executors
- Tools / Toolkits
- Chains
- Callbacks/Tracing
- Async
Reproduction
ss
Expected behavior
retrievers should be able to fetch the documents from qdrant irrespective of embedding models being used
Metadata
Metadata
Assignees
Labels
bugRelated to a bug, vulnerability, unexpected error with an existing featureRelated to a bug, vulnerability, unexpected error with an existing feature