Skip to content
/ PyKRLST Public

Kernel Recursive Least Squares Tracker in Python

License

Notifications You must be signed in to change notification settings

lckr/PyKRLST

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyKRLST

Python implementation of the Kernel Recursive Least Squares Tracker (KRLS-T) by S. Van Vaerenbergh, M. Lazaro-Gredilla, and I. Santamaria.T

Details

This library is a python port of the Matlab implementation of the KRLS-T which is part of the Kernel Methods Tools by Steven Van Vaerenbergh.

Usage

    import pyKRLST
    import numpy as np
    import matplotlib.pyplot as plt
    from sklearn.gaussian_process.kernels import RBF

    def f(x):
        """The function to predict."""
        return x * np.sin(x)

    # Observations
    X = np.atleast_2d([1.0, 3.0, 5.0, 6.0, 7.0, 8.0]).T
    y = f(X).ravel()

    x = np.atleast_2d(np.linspace(0, 10, 1000)).T

    kernel = RBF(10, (1e-2, 1e2))   # Kernel    
    M = 4                           # Dictionary budget
    lambda_ = 0.99                  # Forgetting factor
    c = 1e-5                        # Noise-to-signal ratio (used for regulariation)
    mode = "B2P"                    # Forget mode
    krlst = KRLST(kernel=kernel,
                  l=lambda_, 
                  c=c,
                  M=M,
                  forgetmode=mode)

    # Train in online fashion using at most four basis elements
    for t, a, b in zip(np.arange(10), X, y):
        krlst.observe(a, b, t)

    # Predict for unknown data
    y_pred, y_std = krlst.predict(x)

    plt.figure(figsize=(10,5))
    plt.plot(x, f(x), 'r:', label=r'$f(x) = x\,\sin(x)$')
    plt.plot(krlst.Xb, krlst.mu, 'k.', markersize=20, marker="*",label="Dictionary Elements")
    plt.plot(X, y, 'r.', markersize=15, label='Observations')
    plt.plot(x, y_pred, 'b-', label='Prediction')
    plt.fill(np.concatenate([x, x[::-1]]),
             np.concatenate([y_pred - 1.9600 * y_std,
                            (y_pred + 1.9600 * y_std)[::-1]]),
             alpha=.25, fc='b', ec='None', label='95% confidence interval')
    plt.xlabel('$x$')
    plt.ylabel('$f(x)$')
    plt.ylim(-10, 20)
    plt.legend(loc='upper left')
    plt.show()

Please also refer to the PyKRLST_demo.ipynb notebook.

Note: This KRLS-T implementation uses sklearn.gaussian_process.kernel.Kernel objects to compute the covariances between the data point. This allows the usage of custom kernels that satisfy the Kernel interface.
Note that this libary only uses a subset of the exposed methods of a Kernelobject, namely the __call__() method. Therefore, the KRLS-T will not optimize any kernel parameters.

References:

  • Van Vaerenbergh, Steven, Miguel Lázaro-Gredilla, and Ignacio Santamaría. "Kernel recursive least-squares tracker for time-varying regression." IEEE transactions on neural networks and learning systems 23.8 (2012): 1313-1326
  • Lázaro-Gredilla, Miguel, Steven Van Vaerenbergh, and Ignacio Santamaría. "A Bayesian approach to tracking with kernel recursive least-squares." 2011 IEEE International Workshop on Machine Learning for Signal Processing. IEEE, 2011.

Releases

No releases published

Packages

No packages published