Skip to content

Commit 012256b

Browse files
committed
chore(Topology/Partial): rename type variables (#9862)
We use letters X and Y for topological spaces now, not Greek letters.
1 parent 9a07518 commit 012256b

File tree

1 file changed

+14
-14
lines changed

1 file changed

+14
-14
lines changed

Mathlib/Topology/Partial.lean

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -20,45 +20,45 @@ open Filter
2020

2121
open Topology
2222

23-
variable {α β : Type*} [TopologicalSpace α]
23+
variable {X Y : Type*} [TopologicalSpace X]
2424

25-
theorem rtendsto_nhds {r : Rel β α} {l : Filter β} {a : α} :
26-
RTendsto r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.core s ∈ l :=
25+
theorem rtendsto_nhds {r : Rel Y X} {l : Filter Y} {x : X} :
26+
RTendsto r l (𝓝 x) ↔ ∀ s, IsOpen s → x ∈ s → r.core s ∈ l :=
2727
all_mem_nhds_filter _ _ (fun _s _t => id) _
2828
#align rtendsto_nhds rtendsto_nhds
2929

30-
theorem rtendsto'_nhds {r : Rel β α} {l : Filter β} {a : α} :
31-
RTendsto' r l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → r.preimage s ∈ l := by
30+
theorem rtendsto'_nhds {r : Rel Y X} {l : Filter Y} {x : X} :
31+
RTendsto' r l (𝓝 x) ↔ ∀ s, IsOpen s → x ∈ s → r.preimage s ∈ l := by
3232
rw [rtendsto'_def]
3333
apply all_mem_nhds_filter
3434
apply Rel.preimage_mono
3535
#align rtendsto'_nhds rtendsto'_nhds
3636

37-
theorem ptendsto_nhds {f : β →. α} {l : Filter β} {a : α} :
38-
PTendsto f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.core s ∈ l :=
37+
theorem ptendsto_nhds {f : Y →. X} {l : Filter Y} {x : X} :
38+
PTendsto f l (𝓝 x) ↔ ∀ s, IsOpen s → x ∈ s → f.core s ∈ l :=
3939
rtendsto_nhds
4040
#align ptendsto_nhds ptendsto_nhds
4141

42-
theorem ptendsto'_nhds {f : β →. α} {l : Filter β} {a : α} :
43-
PTendsto' f l (𝓝 a) ↔ ∀ s, IsOpen s → a ∈ s → f.preimage s ∈ l :=
42+
theorem ptendsto'_nhds {f : Y →. X} {l : Filter Y} {x : X} :
43+
PTendsto' f l (𝓝 x) ↔ ∀ s, IsOpen s → x ∈ s → f.preimage s ∈ l :=
4444
rtendsto'_nhds
4545
#align ptendsto'_nhds ptendsto'_nhds
4646

4747
/-! ### Continuity and partial functions -/
4848

4949

50-
variable [TopologicalSpace β]
50+
variable [TopologicalSpace Y]
5151

5252
/-- Continuity of a partial function -/
53-
def PContinuous (f : α →. β) :=
53+
def PContinuous (f : X →. Y) :=
5454
∀ s, IsOpen s → IsOpen (f.preimage s)
5555
#align pcontinuous PContinuous
5656

57-
theorem open_dom_of_pcontinuous {f : α →. β} (h : PContinuous f) : IsOpen f.Dom := by
57+
theorem open_dom_of_pcontinuous {f : X →. Y} (h : PContinuous f) : IsOpen f.Dom := by
5858
rw [← PFun.preimage_univ]; exact h _ isOpen_univ
5959
#align open_dom_of_pcontinuous open_dom_of_pcontinuous
6060

61-
theorem pcontinuous_iff' {f : α →. β} :
61+
theorem pcontinuous_iff' {f : X →. Y} :
6262
PContinuous f ↔ ∀ {x y} (h : y ∈ f x), PTendsto' f (𝓝 x) (𝓝 y) := by
6363
constructor
6464
· intro h x y h'
@@ -83,7 +83,7 @@ theorem pcontinuous_iff' {f : α →. β} :
8383
exact ⟨s, Set.Subset.refl _, os, ys⟩
8484
#align pcontinuous_iff' pcontinuous_iff'
8585

86-
theorem continuousWithinAt_iff_ptendsto_res (f : αβ) {x : α} {s : Set α} :
86+
theorem continuousWithinAt_iff_ptendsto_res (f : XY) {x : X} {s : Set X} :
8787
ContinuousWithinAt f s x ↔ PTendsto (PFun.res f s) (𝓝 x) (𝓝 (f x)) :=
8888
tendsto_iff_ptendsto _ _ _ _
8989
#align continuous_within_at_iff_ptendsto_res continuousWithinAt_iff_ptendsto_res

0 commit comments

Comments
 (0)