@@ -20,45 +20,45 @@ open Filter
20
20
21
21
open Topology
22
22
23
- variable {α β : Type *} [TopologicalSpace α ]
23
+ variable {X Y : Type *} [TopologicalSpace X ]
24
24
25
- theorem rtendsto_nhds {r : Rel β α } {l : Filter β } {a : α } :
26
- RTendsto r l (𝓝 a ) ↔ ∀ s, IsOpen s → a ∈ s → r.core s ∈ l :=
25
+ theorem rtendsto_nhds {r : Rel Y X } {l : Filter Y } {x : X } :
26
+ RTendsto r l (𝓝 x ) ↔ ∀ s, IsOpen s → x ∈ s → r.core s ∈ l :=
27
27
all_mem_nhds_filter _ _ (fun _s _t => id) _
28
28
#align rtendsto_nhds rtendsto_nhds
29
29
30
- theorem rtendsto'_nhds {r : Rel β α } {l : Filter β } {a : α } :
31
- RTendsto' r l (𝓝 a ) ↔ ∀ s, IsOpen s → a ∈ s → r.preimage s ∈ l := by
30
+ theorem rtendsto'_nhds {r : Rel Y X } {l : Filter Y } {x : X } :
31
+ RTendsto' r l (𝓝 x ) ↔ ∀ s, IsOpen s → x ∈ s → r.preimage s ∈ l := by
32
32
rw [rtendsto'_def]
33
33
apply all_mem_nhds_filter
34
34
apply Rel.preimage_mono
35
35
#align rtendsto'_nhds rtendsto'_nhds
36
36
37
- theorem ptendsto_nhds {f : β →. α } {l : Filter β } {a : α } :
38
- PTendsto f l (𝓝 a ) ↔ ∀ s, IsOpen s → a ∈ s → f.core s ∈ l :=
37
+ theorem ptendsto_nhds {f : Y →. X } {l : Filter Y } {x : X } :
38
+ PTendsto f l (𝓝 x ) ↔ ∀ s, IsOpen s → x ∈ s → f.core s ∈ l :=
39
39
rtendsto_nhds
40
40
#align ptendsto_nhds ptendsto_nhds
41
41
42
- theorem ptendsto'_nhds {f : β →. α } {l : Filter β } {a : α } :
43
- PTendsto' f l (𝓝 a ) ↔ ∀ s, IsOpen s → a ∈ s → f.preimage s ∈ l :=
42
+ theorem ptendsto'_nhds {f : Y →. X } {l : Filter Y } {x : X } :
43
+ PTendsto' f l (𝓝 x ) ↔ ∀ s, IsOpen s → x ∈ s → f.preimage s ∈ l :=
44
44
rtendsto'_nhds
45
45
#align ptendsto'_nhds ptendsto'_nhds
46
46
47
47
/-! ### Continuity and partial functions -/
48
48
49
49
50
- variable [TopologicalSpace β ]
50
+ variable [TopologicalSpace Y ]
51
51
52
52
/-- Continuity of a partial function -/
53
- def PContinuous (f : α →. β ) :=
53
+ def PContinuous (f : X →. Y ) :=
54
54
∀ s, IsOpen s → IsOpen (f.preimage s)
55
55
#align pcontinuous PContinuous
56
56
57
- theorem open_dom_of_pcontinuous {f : α →. β } (h : PContinuous f) : IsOpen f.Dom := by
57
+ theorem open_dom_of_pcontinuous {f : X →. Y } (h : PContinuous f) : IsOpen f.Dom := by
58
58
rw [← PFun.preimage_univ]; exact h _ isOpen_univ
59
59
#align open_dom_of_pcontinuous open_dom_of_pcontinuous
60
60
61
- theorem pcontinuous_iff' {f : α →. β } :
61
+ theorem pcontinuous_iff' {f : X →. Y } :
62
62
PContinuous f ↔ ∀ {x y} (h : y ∈ f x), PTendsto' f (𝓝 x) (𝓝 y) := by
63
63
constructor
64
64
· intro h x y h'
@@ -83,7 +83,7 @@ theorem pcontinuous_iff' {f : α →. β} :
83
83
exact ⟨s, Set.Subset.refl _, os, ys⟩
84
84
#align pcontinuous_iff' pcontinuous_iff'
85
85
86
- theorem continuousWithinAt_iff_ptendsto_res (f : α → β ) {x : α } {s : Set α } :
86
+ theorem continuousWithinAt_iff_ptendsto_res (f : X → Y ) {x : X } {s : Set X } :
87
87
ContinuousWithinAt f s x ↔ PTendsto (PFun.res f s) (𝓝 x) (𝓝 (f x)) :=
88
88
tendsto_iff_ptendsto _ _ _ _
89
89
#align continuous_within_at_iff_ptendsto_res continuousWithinAt_iff_ptendsto_res
0 commit comments