Skip to content

Commit 0247200

Browse files
committed
chore(MeasureTheory/../Prod/Integral): Drop an assumption, golf (#7579)
Drop some measurability assumptions by using the fact that `Prod.swap` is a measurable equivalence.
1 parent 0cb7083 commit 0247200

File tree

1 file changed

+10
-13
lines changed

1 file changed

+10
-13
lines changed

Mathlib/MeasureTheory/Constructions/Prod/Integral.lean

Lines changed: 10 additions & 13 deletions
Original file line numberDiff line numberDiff line change
@@ -220,17 +220,16 @@ variable [SigmaFinite ν]
220220

221221
section
222222

223+
theorem integrable_swap_iff [SigmaFinite μ] {f : α × β → E} :
224+
Integrable (f ∘ Prod.swap) (ν.prod μ) ↔ Integrable f (μ.prod ν) :=
225+
measurePreserving_swap.integrable_comp_emb MeasurableEquiv.prodComm.measurableEmbedding
226+
#align measure_theory.integrable_swap_iff MeasureTheory.integrable_swap_iff
227+
223228
theorem Integrable.swap [SigmaFinite μ] ⦃f : α × β → E⦄ (hf : Integrable f (μ.prod ν)) :
224229
Integrable (f ∘ Prod.swap) (ν.prod μ) :=
225-
⟨hf.aestronglyMeasurable.prod_swap,
226-
(lintegral_prod_swap _ hf.aestronglyMeasurable.ennnorm : _).le.trans_lt hf.hasFiniteIntegral⟩
230+
integrable_swap_iff.2 hf
227231
#align measure_theory.integrable.swap MeasureTheory.Integrable.swap
228232

229-
theorem integrable_swap_iff [SigmaFinite μ] ⦃f : α × β → E⦄ :
230-
Integrable (f ∘ Prod.swap) (ν.prod μ) ↔ Integrable f (μ.prod ν) :=
231-
fun hf => hf.swap, fun hf => hf.swap⟩
232-
#align measure_theory.integrable_swap_iff MeasureTheory.integrable_swap_iff
233-
234233
theorem hasFiniteIntegral_prod_iff ⦃f : α × β → E⦄ (h1f : StronglyMeasurable f) :
235234
HasFiniteIntegral f (μ.prod ν) ↔
236235
(∀ᵐ x ∂μ, HasFiniteIntegral (fun y => f (x, y)) ν) ∧
@@ -336,13 +335,11 @@ theorem Integrable.integral_prod_right [SigmaFinite μ] ⦃f : α × β → E⦄
336335

337336
/-! ### The Bochner integral on a product -/
338337

339-
340338
variable [SigmaFinite μ]
341339

342-
theorem integral_prod_swap (f : α × β → E) (hf : AEStronglyMeasurable f (μ.prod ν)) :
343-
∫ z, f z.swap ∂ν.prod μ = ∫ z, f z ∂μ.prod ν := by
344-
rw [← prod_swap] at hf
345-
rw [← integral_map measurable_swap.aemeasurable hf, prod_swap]
340+
theorem integral_prod_swap (f : α × β → E) :
341+
∫ z, f z.swap ∂ν.prod μ = ∫ z, f z ∂μ.prod ν :=
342+
measurePreserving_swap.integral_comp MeasurableEquiv.prodComm.measurableEmbedding _
346343
#align measure_theory.integral_prod_swap MeasureTheory.integral_prod_swap
347344

348345
variable {E' : Type*} [NormedAddCommGroup E'] [CompleteSpace E'] [NormedSpace ℝ E']
@@ -477,7 +474,7 @@ theorem integral_prod :
477474
This version has the integrals on the right-hand side in the other order. -/
478475
theorem integral_prod_symm (f : α × β → E) (hf : Integrable f (μ.prod ν)) :
479476
∫ z, f z ∂μ.prod ν = ∫ y, ∫ x, f (x, y) ∂μ ∂ν := by
480-
simp_rw [← integral_prod_swap f hf.aestronglyMeasurable]; exact integral_prod _ hf.swap
477+
rw [← integral_prod_swap f]; exact integral_prod _ hf.swap
481478
#align measure_theory.integral_prod_symm MeasureTheory.integral_prod_symm
482479

483480
/-- Reversed version of **Fubini's Theorem**. -/

0 commit comments

Comments
 (0)