@@ -220,17 +220,16 @@ variable [SigmaFinite ν]
220
220
221
221
section
222
222
223
+ theorem integrable_swap_iff [SigmaFinite μ] {f : α × β → E} :
224
+ Integrable (f ∘ Prod.swap) (ν.prod μ) ↔ Integrable f (μ.prod ν) :=
225
+ measurePreserving_swap.integrable_comp_emb MeasurableEquiv.prodComm.measurableEmbedding
226
+ #align measure_theory.integrable_swap_iff MeasureTheory.integrable_swap_iff
227
+
223
228
theorem Integrable.swap [SigmaFinite μ] ⦃f : α × β → E⦄ (hf : Integrable f (μ.prod ν)) :
224
229
Integrable (f ∘ Prod.swap) (ν.prod μ) :=
225
- ⟨hf.aestronglyMeasurable.prod_swap,
226
- (lintegral_prod_swap _ hf.aestronglyMeasurable.ennnorm : _).le.trans_lt hf.hasFiniteIntegral⟩
230
+ integrable_swap_iff.2 hf
227
231
#align measure_theory.integrable.swap MeasureTheory.Integrable.swap
228
232
229
- theorem integrable_swap_iff [SigmaFinite μ] ⦃f : α × β → E⦄ :
230
- Integrable (f ∘ Prod.swap) (ν.prod μ) ↔ Integrable f (μ.prod ν) :=
231
- ⟨fun hf => hf.swap, fun hf => hf.swap⟩
232
- #align measure_theory.integrable_swap_iff MeasureTheory.integrable_swap_iff
233
-
234
233
theorem hasFiniteIntegral_prod_iff ⦃f : α × β → E⦄ (h1f : StronglyMeasurable f) :
235
234
HasFiniteIntegral f (μ.prod ν) ↔
236
235
(∀ᵐ x ∂μ, HasFiniteIntegral (fun y => f (x, y)) ν) ∧
@@ -336,13 +335,11 @@ theorem Integrable.integral_prod_right [SigmaFinite μ] ⦃f : α × β → E⦄
336
335
337
336
/-! ### The Bochner integral on a product -/
338
337
339
-
340
338
variable [SigmaFinite μ]
341
339
342
- theorem integral_prod_swap (f : α × β → E) (hf : AEStronglyMeasurable f (μ.prod ν)) :
343
- ∫ z, f z.swap ∂ν.prod μ = ∫ z, f z ∂μ.prod ν := by
344
- rw [← prod_swap] at hf
345
- rw [← integral_map measurable_swap.aemeasurable hf, prod_swap]
340
+ theorem integral_prod_swap (f : α × β → E) :
341
+ ∫ z, f z.swap ∂ν.prod μ = ∫ z, f z ∂μ.prod ν :=
342
+ measurePreserving_swap.integral_comp MeasurableEquiv.prodComm.measurableEmbedding _
346
343
#align measure_theory.integral_prod_swap MeasureTheory.integral_prod_swap
347
344
348
345
variable {E' : Type *} [NormedAddCommGroup E'] [CompleteSpace E'] [NormedSpace ℝ E']
@@ -477,7 +474,7 @@ theorem integral_prod :
477
474
This version has the integrals on the right-hand side in the other order. -/
478
475
theorem integral_prod_symm (f : α × β → E) (hf : Integrable f (μ.prod ν)) :
479
476
∫ z, f z ∂μ.prod ν = ∫ y, ∫ x, f (x, y) ∂μ ∂ν := by
480
- simp_rw [← integral_prod_swap f hf.aestronglyMeasurable ]; exact integral_prod _ hf.swap
477
+ rw [← integral_prod_swap f]; exact integral_prod _ hf.swap
481
478
#align measure_theory.integral_prod_symm MeasureTheory.integral_prod_symm
482
479
483
480
/-- Reversed version of **Fubini's Theorem** . -/
0 commit comments