Skip to content

Commit 02a9557

Browse files
committed
chore(Geometry/Manifold): rename many lemmas (#22719)
Mostly from `prod_mk` to `prodMk`. Cherry-picked from #22195
1 parent c30d062 commit 02a9557

File tree

14 files changed

+149
-87
lines changed

14 files changed

+149
-87
lines changed

Mathlib/Geometry/Manifold/Algebra/LieGroup.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -206,7 +206,7 @@ instance {𝕜 : Type*} [NontriviallyNormedField 𝕜] {n : WithTop ℕ∞}
206206
[NormedAddCommGroup E'] [NormedSpace 𝕜 E'] {H' : Type*} [TopologicalSpace H']
207207
{I' : ModelWithCorners 𝕜 E' H'} {G' : Type*} [TopologicalSpace G'] [ChartedSpace H' G']
208208
[Group G'] [LieGroup I' n G'] : LieGroup (I.prod I') n (G × G') :=
209-
{ ContMDiffMul.prod _ _ _ _ with contMDiff_inv := contMDiff_fst.inv.prod_mk contMDiff_snd.inv }
209+
{ ContMDiffMul.prod _ _ _ _ with contMDiff_inv := contMDiff_fst.inv.prodMk contMDiff_snd.inv }
210210

211211
end Product
212212

Mathlib/Geometry/Manifold/Algebra/Monoid.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -125,7 +125,7 @@ variable [ContMDiffMul I n G] {f g : M → G} {s : Set M} {x : M}
125125
@[to_additive]
126126
theorem ContMDiffWithinAt.mul (hf : ContMDiffWithinAt I' I n f s x)
127127
(hg : ContMDiffWithinAt I' I n g s x) : ContMDiffWithinAt I' I n (f * g) s x :=
128-
(contMDiff_mul I n).contMDiffAt.comp_contMDiffWithinAt x (hf.prod_mk hg)
128+
(contMDiff_mul I n).contMDiffAt.comp_contMDiffWithinAt x (hf.prodMk hg)
129129

130130
@[to_additive]
131131
nonrec theorem ContMDiffAt.mul (hf : ContMDiffAt I' I n f x) (hg : ContMDiffAt I' I n g x) :
@@ -266,7 +266,7 @@ instance ContMDiffMul.prod {𝕜 : Type*} [NontriviallyNormedField 𝕜] {E : Ty
266266
[ChartedSpace H' G'] [Mul G'] [ContMDiffMul I' n G'] : ContMDiffMul (I.prod I') n (G × G') :=
267267
{ IsManifold.prod G G' with
268268
contMDiff_mul :=
269-
((contMDiff_fst.comp contMDiff_fst).mul (contMDiff_fst.comp contMDiff_snd)).prod_mk
269+
((contMDiff_fst.comp contMDiff_fst).mul (contMDiff_fst.comp contMDiff_snd)).prodMk
270270
((contMDiff_snd.comp contMDiff_fst).mul (contMDiff_snd.comp contMDiff_snd)) }
271271

272272
end ContMDiffMul

Mathlib/Geometry/Manifold/ContMDiff/Constructions.lean

Lines changed: 74 additions & 35 deletions
Original file line numberDiff line numberDiff line change
@@ -47,42 +47,66 @@ variable {𝕜 : Type*} [NontriviallyNormedField 𝕜]
4747

4848
section ProdMk
4949

50-
theorem ContMDiffWithinAt.prod_mk {f : M → M'} {g : M → N'} (hf : ContMDiffWithinAt I I' n f s x)
50+
theorem ContMDiffWithinAt.prodMk {f : M → M'} {g : M → N'} (hf : ContMDiffWithinAt I I' n f s x)
5151
(hg : ContMDiffWithinAt I J' n g s x) :
5252
ContMDiffWithinAt I (I'.prod J') n (fun x => (f x, g x)) s x := by
5353
rw [contMDiffWithinAt_iff] at *
5454
exact ⟨hf.1.prod hg.1, hf.2.prod hg.2
5555

56-
theorem ContMDiffWithinAt.prod_mk_space {f : M → E'} {g : M → F'}
56+
@[deprecated (since := "2025-03-08")]
57+
alias ContMDiffWithinAt.prod_mk := ContMDiffWithinAt.prodMk
58+
59+
theorem ContMDiffWithinAt.prodMk_space {f : M → E'} {g : M → F'}
5760
(hf : ContMDiffWithinAt I 𝓘(𝕜, E') n f s x) (hg : ContMDiffWithinAt I 𝓘(𝕜, F') n g s x) :
5861
ContMDiffWithinAt I 𝓘(𝕜, E' × F') n (fun x => (f x, g x)) s x := by
5962
rw [contMDiffWithinAt_iff] at *
6063
exact ⟨hf.1.prod hg.1, hf.2.prod hg.2
6164

62-
nonrec theorem ContMDiffAt.prod_mk {f : M → M'} {g : M → N'} (hf : ContMDiffAt I I' n f x)
65+
@[deprecated (since := "2025-03-08")]
66+
alias ContMDiffWithinAt.prod_mk_space := ContMDiffWithinAt.prodMk_space
67+
68+
nonrec theorem ContMDiffAt.prodMk {f : M → M'} {g : M → N'} (hf : ContMDiffAt I I' n f x)
6369
(hg : ContMDiffAt I J' n g x) : ContMDiffAt I (I'.prod J') n (fun x => (f x, g x)) x :=
64-
hf.prod_mk hg
70+
hf.prodMk hg
6571

66-
nonrec theorem ContMDiffAt.prod_mk_space {f : M → E'} {g : M → F'}
72+
@[deprecated (since := "2025-03-08")]
73+
alias ContMDiffAt.prod_mk := ContMDiffAt.prodMk
74+
75+
nonrec theorem ContMDiffAt.prodMk_space {f : M → E'} {g : M → F'}
6776
(hf : ContMDiffAt I 𝓘(𝕜, E') n f x) (hg : ContMDiffAt I 𝓘(𝕜, F') n g x) :
6877
ContMDiffAt I 𝓘(𝕜, E' × F') n (fun x => (f x, g x)) x :=
69-
hf.prod_mk_space hg
78+
hf.prodMk_space hg
79+
80+
@[deprecated (since := "2025-03-08")]
81+
alias ContMDiffAt.prod_mk_space := ContMDiffAt.prodMk_space
7082

71-
theorem ContMDiffOn.prod_mk {f : M → M'} {g : M → N'} (hf : ContMDiffOn I I' n f s)
83+
theorem ContMDiffOn.prodMk {f : M → M'} {g : M → N'} (hf : ContMDiffOn I I' n f s)
7284
(hg : ContMDiffOn I J' n g s) : ContMDiffOn I (I'.prod J') n (fun x => (f x, g x)) s :=
73-
fun x hx => (hf x hx).prod_mk (hg x hx)
85+
fun x hx => (hf x hx).prodMk (hg x hx)
7486

75-
theorem ContMDiffOn.prod_mk_space {f : M → E'} {g : M → F'} (hf : ContMDiffOn I 𝓘(𝕜, E') n f s)
87+
@[deprecated (since := "2025-03-08")]
88+
alias ContMDiffOn.prod_mk := ContMDiffOn.prodMk
89+
90+
theorem ContMDiffOn.prodMk_space {f : M → E'} {g : M → F'} (hf : ContMDiffOn I 𝓘(𝕜, E') n f s)
7691
(hg : ContMDiffOn I 𝓘(𝕜, F') n g s) : ContMDiffOn I 𝓘(𝕜, E' × F') n (fun x => (f x, g x)) s :=
77-
fun x hx => (hf x hx).prod_mk_space (hg x hx)
92+
fun x hx => (hf x hx).prodMk_space (hg x hx)
93+
94+
@[deprecated (since := "2025-03-08")]
95+
alias ContMDiffOn.prod_mk_space := ContMDiffOn.prodMk_space
7896

79-
nonrec theorem ContMDiff.prod_mk {f : M → M'} {g : M → N'} (hf : ContMDiff I I' n f)
97+
nonrec theorem ContMDiff.prodMk {f : M → M'} {g : M → N'} (hf : ContMDiff I I' n f)
8098
(hg : ContMDiff I J' n g) : ContMDiff I (I'.prod J') n fun x => (f x, g x) := fun x =>
81-
(hf x).prod_mk (hg x)
99+
(hf x).prodMk (hg x)
100+
101+
@[deprecated (since := "2025-03-08")]
102+
alias ContMDiff.prod_mk := ContMDiff.prodMk
82103

83-
theorem ContMDiff.prod_mk_space {f : M → E'} {g : M → F'} (hf : ContMDiff I 𝓘(𝕜, E') n f)
104+
theorem ContMDiff.prodMk_space {f : M → E'} {g : M → F'} (hf : ContMDiff I 𝓘(𝕜, E') n f)
84105
(hg : ContMDiff I 𝓘(𝕜, F') n g) : ContMDiff I 𝓘(𝕜, E' × F') n fun x => (f x, g x) := fun x =>
85-
(hf x).prod_mk_space (hg x)
106+
(hf x).prodMk_space (hg x)
107+
108+
@[deprecated (since := "2025-03-08")]
109+
alias ContMDiff.prod_mk_space := ContMDiff.prodMk_space
86110

87111
@[deprecated (since := "2024-11-20")] alias SmoothWithinAt.prod_mk := ContMDiffWithinAt.prod_mk
88112

@@ -206,7 +230,7 @@ end Projections
206230
theorem contMDiffWithinAt_prod_iff (f : M → M' × N') :
207231
ContMDiffWithinAt I (I'.prod J') n f s x ↔
208232
ContMDiffWithinAt I I' n (Prod.fst ∘ f) s x ∧ ContMDiffWithinAt I J' n (Prod.snd ∘ f) s x :=
209-
fun h => ⟨h.fst, h.snd⟩, fun h => h.1.prod_mk h.2
233+
fun h => ⟨h.fst, h.snd⟩, fun h => h.1.prodMk h.2
210234

211235
theorem contMDiffWithinAt_prod_module_iff (f : M → F₁ × F₂) :
212236
ContMDiffWithinAt I 𝓘(𝕜, F₁ × F₂) n f s x ↔
@@ -242,7 +266,7 @@ theorem contMDiffOn_prod_module_iff (f : M → F₁ × F₂) :
242266
theorem contMDiff_prod_iff (f : M → M' × N') :
243267
ContMDiff I (I'.prod J') n f ↔
244268
ContMDiff I I' n (Prod.fst ∘ f) ∧ ContMDiff I J' n (Prod.snd ∘ f) :=
245-
fun h => ⟨h.fst, h.snd⟩, fun h => by convert h.1.prod_mk h.2
269+
fun h => ⟨h.fst, h.snd⟩, fun h => by convert h.1.prodMk h.2
246270

247271
theorem contMDiff_prod_module_iff (f : M → F₁ × F₂) :
248272
ContMDiff I 𝓘(𝕜, F₁ × F₂) n f ↔
@@ -253,7 +277,7 @@ theorem contMDiff_prod_module_iff (f : M → F₁ × F₂) :
253277
theorem contMDiff_prod_assoc :
254278
ContMDiff ((I.prod I').prod J) (I.prod (I'.prod J)) n
255279
fun x : (M × M') × N => (x.1.1, x.1.2, x.2) :=
256-
contMDiff_fst.fst.prod_mk <| contMDiff_fst.snd.prod_mk contMDiff_snd
280+
contMDiff_fst.fst.prodMk <| contMDiff_fst.snd.prodMk contMDiff_snd
257281

258282
@[deprecated (since := "2024-11-20")] alias smoothAt_prod_iff := contMDiffAt_prod_iff
259283

@@ -267,37 +291,52 @@ variable {g : N → N'} {r : Set N} {y : N}
267291

268292
/-- The product map of two `C^n` functions within a set at a point is `C^n`
269293
within the product set at the product point. -/
270-
theorem ContMDiffWithinAt.prod_map' {p : M × N} (hf : ContMDiffWithinAt I I' n f s p.1)
294+
theorem ContMDiffWithinAt.prodMap' {p : M × N} (hf : ContMDiffWithinAt I I' n f s p.1)
271295
(hg : ContMDiffWithinAt J J' n g r p.2) :
272296
ContMDiffWithinAt (I.prod J) (I'.prod J') n (Prod.map f g) (s ×ˢ r) p :=
273-
(hf.comp p contMDiffWithinAt_fst (prod_subset_preimage_fst _ _)).prod_mk <|
274-
hg.comp p contMDiffWithinAt_snd (prod_subset_preimage_snd _ _)
297+
(hf.comp p contMDiffWithinAt_fst mapsTo_fst_prod).prodMk <|
298+
hg.comp p contMDiffWithinAt_snd mapsTo_snd_prod
299+
300+
@[deprecated (since := "2025-03-08")]
301+
alias ContMDiffWithinAt.prod_map' := ContMDiffWithinAt.prodMap'
275302

276-
theorem ContMDiffWithinAt.prod_map (hf : ContMDiffWithinAt I I' n f s x)
303+
theorem ContMDiffWithinAt.prodMap (hf : ContMDiffWithinAt I I' n f s x)
277304
(hg : ContMDiffWithinAt J J' n g r y) :
278305
ContMDiffWithinAt (I.prod J) (I'.prod J') n (Prod.map f g) (s ×ˢ r) (x, y) :=
279-
ContMDiffWithinAt.prod_map' hf hg
306+
ContMDiffWithinAt.prodMap' hf hg
280307

281-
theorem ContMDiffAt.prod_map (hf : ContMDiffAt I I' n f x) (hg : ContMDiffAt J J' n g y) :
308+
@[deprecated (since := "2025-03-08")]
309+
alias ContMDiffWithinAt.prod_map := ContMDiffWithinAt.prodMap
310+
311+
theorem ContMDiffAt.prodMap (hf : ContMDiffAt I I' n f x) (hg : ContMDiffAt J J' n g y) :
282312
ContMDiffAt (I.prod J) (I'.prod J') n (Prod.map f g) (x, y) := by
283-
rw [← contMDiffWithinAt_univ] at *
284-
convert hf.prod_map hg
285-
exact univ_prod_univ.symm
313+
simp only [← contMDiffWithinAt_univ, ← univ_prod_univ] at *
314+
exact hf.prodMap hg
315+
316+
@[deprecated (since := "2025-03-08")]
317+
alias ContMDiffAt.prod_map := ContMDiffAt.prodMap
286318

287-
theorem ContMDiffAt.prod_map' {p : M × N} (hf : ContMDiffAt I I' n f p.1)
288-
(hg : ContMDiffAt J J' n g p.2) : ContMDiffAt (I.prod J) (I'.prod J') n (Prod.map f g) p := by
289-
rcases p with ⟨⟩
290-
exact hf.prod_map hg
319+
theorem ContMDiffAt.prodMap' {p : M × N} (hf : ContMDiffAt I I' n f p.1)
320+
(hg : ContMDiffAt J J' n g p.2) : ContMDiffAt (I.prod J) (I'.prod J') n (Prod.map f g) p :=
321+
hf.prodMap hg
291322

292-
theorem ContMDiffOn.prod_map (hf : ContMDiffOn I I' n f s) (hg : ContMDiffOn J J' n g r) :
323+
@[deprecated (since := "2025-03-08")]
324+
alias ContMDiffAt.prod_map' := ContMDiffAt.prodMap'
325+
326+
theorem ContMDiffOn.prodMap (hf : ContMDiffOn I I' n f s) (hg : ContMDiffOn J J' n g r) :
293327
ContMDiffOn (I.prod J) (I'.prod J') n (Prod.map f g) (s ×ˢ r) :=
294-
(hf.comp contMDiffOn_fst (prod_subset_preimage_fst _ _)).prod_mk <|
295-
hg.comp contMDiffOn_snd (prod_subset_preimage_snd _ _)
328+
(hf.comp contMDiffOn_fst mapsTo_fst_prod).prodMk <| hg.comp contMDiffOn_snd mapsTo_snd_prod
329+
330+
@[deprecated (since := "2025-03-08")]
331+
alias ContMDiffOn.prod_map := ContMDiffOn.prodMap
296332

297-
theorem ContMDiff.prod_map (hf : ContMDiff I I' n f) (hg : ContMDiff J J' n g) :
333+
theorem ContMDiff.prodMap (hf : ContMDiff I I' n f) (hg : ContMDiff J J' n g) :
298334
ContMDiff (I.prod J) (I'.prod J') n (Prod.map f g) := by
299335
intro p
300-
exact (hf p.1).prod_map' (hg p.2)
336+
exact (hf p.1).prodMap' (hg p.2)
337+
338+
@[deprecated (since := "2025-03-08")]
339+
alias ContMDiff.prod_map := ContMDiff.prodMap
301340

302341
@[deprecated (since := "2024-11-20")] alias SmoothWithinAt.prod_map := ContMDiffWithinAt.prod_map
303342

Mathlib/Geometry/Manifold/ContMDiff/NormedSpace.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -161,7 +161,7 @@ theorem ContMDiffWithinAt.clm_comp {g : M → F₁ →L[𝕜] F₃} {f : M → F
161161
(hf : ContMDiffWithinAt I 𝓘(𝕜, F₂ →L[𝕜] F₁) n f s x) :
162162
ContMDiffWithinAt I 𝓘(𝕜, F₂ →L[𝕜] F₃) n (fun x => (g x).comp (f x)) s x :=
163163
ContDiff.comp_contMDiffWithinAt (g := fun x : (F₁ →L[𝕜] F₃) × (F₂ →L[𝕜] F₁) => x.1.comp x.2)
164-
(f := fun x => (g x, f x)) (contDiff_fst.clm_comp contDiff_snd) (hg.prod_mk_space hf)
164+
(f := fun x => (g x, f x)) (contDiff_fst.clm_comp contDiff_snd) (hg.prodMk_space hf)
165165

166166
theorem ContMDiffAt.clm_comp {g : M → F₁ →L[𝕜] F₃} {f : M → F₂ →L[𝕜] F₁} {x : M}
167167
(hg : ContMDiffAt I 𝓘(𝕜, F₁ →L[𝕜] F₃) n g x) (hf : ContMDiffAt I 𝓘(𝕜, F₂ →L[𝕜] F₁) n f x) :
@@ -185,7 +185,7 @@ theorem ContMDiffWithinAt.clm_apply {g : M → F₁ →L[𝕜] F₂} {f : M →
185185
ContMDiffWithinAt I 𝓘(𝕜, F₂) n (fun x => g x (f x)) s x :=
186186
ContDiffWithinAt.comp_contMDiffWithinAt (t := univ)
187187
(g := fun x : (F₁ →L[𝕜] F₂) × F₁ => x.1 x.2)
188-
(by apply ContDiff.contDiffAt; exact contDiff_fst.clm_apply contDiff_snd) (hg.prod_mk_space hf)
188+
(by apply ContDiff.contDiffAt; exact contDiff_fst.clm_apply contDiff_snd) (hg.prodMk_space hf)
189189
(by simp_rw [preimage_univ, subset_univ])
190190

191191
/-- Applying a linear map to a vector is smooth. Version in vector spaces. For a
@@ -240,7 +240,7 @@ theorem ContMDiffWithinAt.clm_prodMap {g : M → F₁ →L[𝕜] F₃} {f : M
240240
ContMDiffWithinAt I 𝓘(𝕜, F₁ × F₂ →L[𝕜] F₃ × F₄) n (fun x => (g x).prodMap (f x)) s x :=
241241
ContDiff.comp_contMDiffWithinAt (g := fun x : (F₁ →L[𝕜] F₃) × (F₂ →L[𝕜] F₄) => x.1.prodMap x.2)
242242
(f := fun x => (g x, f x)) (ContinuousLinearMap.prodMapL 𝕜 F₁ F₃ F₂ F₄).contDiff
243-
(hg.prod_mk_space hf)
243+
(hg.prodMk_space hf)
244244

245245
nonrec theorem ContMDiffAt.clm_prodMap {g : M → F₁ →L[𝕜] F₃} {f : M → F₂ →L[𝕜] F₄} {x : M}
246246
(hg : ContMDiffAt I 𝓘(𝕜, F₁ →L[𝕜] F₃) n g x) (hf : ContMDiffAt I 𝓘(𝕜, F₂ →L[𝕜] F₄) n f x) :
@@ -270,7 +270,7 @@ theorem contMDiff_smul : ContMDiff (𝓘(𝕜).prod 𝓘(𝕜, V)) 𝓘(𝕜, V)
270270
theorem ContMDiffWithinAt.smul {f : M → 𝕜} {g : M → V} (hf : ContMDiffWithinAt I 𝓘(𝕜) n f s x)
271271
(hg : ContMDiffWithinAt I 𝓘(𝕜, V) n g s x) :
272272
ContMDiffWithinAt I 𝓘(𝕜, V) n (fun p => f p • g p) s x :=
273-
(contMDiff_smul.of_le le_top).contMDiffAt.comp_contMDiffWithinAt x (hf.prod_mk hg)
273+
(contMDiff_smul.of_le le_top).contMDiffAt.comp_contMDiffWithinAt x (hf.prodMk hg)
274274

275275
nonrec theorem ContMDiffAt.smul {f : M → 𝕜} {g : M → V} (hf : ContMDiffAt I 𝓘(𝕜) n f x)
276276
(hg : ContMDiffAt I 𝓘(𝕜, V) n g x) : ContMDiffAt I 𝓘(𝕜, V) n (fun p => f p • g p) x :=

Mathlib/Geometry/Manifold/ContMDiffMFDeriv.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@ protected theorem ContMDiffWithinAt.mfderivWithin {x₀ : N} {f : N → M → M'
101101
have : MapsTo (fun x ↦ (x, g x)) t (t ×ˢ u) := fun y hy ↦ by simp [hy, hu hy]
102102
filter_upwards [((continuousWithinAt_id.prod hg.continuousWithinAt)
103103
|>.tendsto_nhdsWithin this).eventually h3f, self_mem_nhdsWithin] with x hx h'x
104-
apply hx.comp (g x) (contMDiffWithinAt_const.prod_mk contMDiffWithinAt_id)
104+
apply hx.comp (g x) (contMDiffWithinAt_const.prodMk contMDiffWithinAt_id)
105105
exact fun y hy ↦ by simp [h'x, hy]
106106
have h2g : g ⁻¹' (extChartAt I (g x₀)).source ∈ 𝓝[t] x₀ :=
107107
hg.continuousWithinAt.preimage_mem_nhdsWithin (extChartAt_source_mem_nhds (g x₀))

Mathlib/Geometry/Manifold/ContMDiffMap.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -108,7 +108,7 @@ def snd : C^n⟮I.prod I', M × M'; I', M'⟯ :=
108108

109109
/-- Given two `C^n` maps `f` and `g`, this is the `C^n` map `x ↦ (f x, g x)`. -/
110110
def prodMk (f : C^n⟮J, N; I, M⟯) (g : C^n⟮J, N; I', M'⟯) : C^n⟮J, N; I.prod I', M × M'⟯ :=
111-
fun x => (f x, g x), f.2.prod_mk g.2
111+
fun x => (f x, g x), f.2.prodMk g.2
112112

113113
end ContMDiffMap
114114

Mathlib/Geometry/Manifold/Diffeomorph.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -530,9 +530,9 @@ section Product
530530
/-- Product of two diffeomorphisms. -/
531531
def prodCongr (h₁ : M ≃ₘ^n⟮I, I'⟯ M') (h₂ : N ≃ₘ^n⟮J, J'⟯ N') :
532532
(M × N) ≃ₘ^n⟮I.prod J, I'.prod J'⟯ M' × N' where
533-
contMDiff_toFun := (h₁.contMDiff.comp contMDiff_fst).prod_mk (h₂.contMDiff.comp contMDiff_snd)
533+
contMDiff_toFun := (h₁.contMDiff.comp contMDiff_fst).prodMk (h₂.contMDiff.comp contMDiff_snd)
534534
contMDiff_invFun :=
535-
(h₁.symm.contMDiff.comp contMDiff_fst).prod_mk (h₂.symm.contMDiff.comp contMDiff_snd)
535+
(h₁.symm.contMDiff.comp contMDiff_fst).prodMk (h₂.symm.contMDiff.comp contMDiff_snd)
536536
toEquiv := h₁.toEquiv.prodCongr h₂.toEquiv
537537

538538
@[simp]
@@ -551,8 +551,8 @@ variable (I J J' M N N' n)
551551

552552
/-- `M × N` is diffeomorphic to `N × M`. -/
553553
def prodComm : (M × N) ≃ₘ^n⟮I.prod J, J.prod I⟯ N × M where
554-
contMDiff_toFun := contMDiff_snd.prod_mk contMDiff_fst
555-
contMDiff_invFun := contMDiff_snd.prod_mk contMDiff_fst
554+
contMDiff_toFun := contMDiff_snd.prodMk contMDiff_fst
555+
contMDiff_invFun := contMDiff_snd.prodMk contMDiff_fst
556556
toEquiv := Equiv.prodComm M N
557557

558558
@[simp]
@@ -566,10 +566,10 @@ theorem coe_prodComm : ⇑(prodComm I J M N n) = Prod.swap :=
566566
/-- `(M × N) × N'` is diffeomorphic to `M × (N × N')`. -/
567567
def prodAssoc : ((M × N) × N') ≃ₘ^n⟮(I.prod J).prod J', I.prod (J.prod J')⟯ M × N × N' where
568568
contMDiff_toFun :=
569-
(contMDiff_fst.comp contMDiff_fst).prod_mk
570-
((contMDiff_snd.comp contMDiff_fst).prod_mk contMDiff_snd)
569+
(contMDiff_fst.comp contMDiff_fst).prodMk
570+
((contMDiff_snd.comp contMDiff_fst).prodMk contMDiff_snd)
571571
contMDiff_invFun :=
572-
(contMDiff_fst.prod_mk (contMDiff_fst.comp contMDiff_snd)).prod_mk
572+
(contMDiff_fst.prodMk (contMDiff_fst.comp contMDiff_snd)).prodMk
573573
(contMDiff_snd.comp contMDiff_snd)
574574
toEquiv := Equiv.prodAssoc M N N'
575575

Mathlib/Geometry/Manifold/Instances/Sphere.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -561,8 +561,7 @@ instance : LieGroup (𝓡 1) ω Circle where
561561
-- Porting note: needed to fill in first 3 arguments or could not figure out typeclasses
562562
suffices h₁ : ContMDiff ((𝓡 1).prod (𝓡 1)) (𝓘(ℝ, ℂ).prod 𝓘(ℝ, ℂ)) ω (Prod.map c c) from
563563
h₂.comp h₁
564-
apply ContMDiff.prod_map <;>
565-
exact contMDiff_coe_sphere
564+
apply ContMDiff.prodMap <;> exact contMDiff_coe_sphere
566565
contMDiff_inv := by
567566
apply ContMDiff.codRestrict_sphere
568567
simp only [← Circle.coe_inv, Circle.coe_inv_eq_conj]

Mathlib/Geometry/Manifold/Instances/UnitsOfNormedAlgebra.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -60,7 +60,7 @@ instance : LieGroup 𝓘(𝕜, R) n Rˣ where
6060
rw [this]
6161
have : ContMDiff (𝓘(𝕜, R).prod 𝓘(𝕜, R)) 𝓘(𝕜, R × R) n
6262
(fun x : Rˣ × Rˣ => ((x.1 : R), (x.2 : R))) :=
63-
(contMDiff_val.comp contMDiff_fst).prod_mk_space (contMDiff_val.comp contMDiff_snd)
63+
(contMDiff_val.comp contMDiff_fst).prodMk_space (contMDiff_val.comp contMDiff_snd)
6464
refine ContMDiff.comp ?_ this
6565
rw [contMDiff_iff_contDiff]
6666
exact contDiff_mul

0 commit comments

Comments
 (0)