@@ -1054,6 +1054,44 @@ theorem lintegral_iInf {f : ℕ → α → ℝ≥0∞} (h_meas : ∀ n, Measurab
1054
1054
lintegral_iInf_ae h_meas (fun n => ae_of_all _ <| h_anti n.le_succ) h_fin
1055
1055
#align measure_theory.lintegral_infi MeasureTheory.lintegral_iInf
1056
1056
1057
+ /-- Monotone convergence for an infimum over a directed family and indexed by a countable type -/
1058
+ theorem lintegral_iInf_directed_of_measurable {mα : MeasurableSpace α} [Countable β]
1059
+ {f : β → α → ℝ≥0 ∞} {μ : Measure α} (hμ : μ ≠ 0 ) (hf : ∀ b, Measurable (f b))
1060
+ (hf_int : ∀ b, ∫⁻ a, f b a ∂μ ≠ ∞) (h_directed : Directed (· ≥ ·) f) :
1061
+ ∫⁻ a, ⨅ b, f b a ∂μ = ⨅ b, ∫⁻ a, f b a ∂μ := by
1062
+ cases nonempty_encodable β
1063
+ cases isEmpty_or_nonempty β
1064
+ · -- Porting note: the next `simp only` doesn't do anything, so added a workaround below.
1065
+ -- simp only [WithTop.iInf_empty, lintegral_const]
1066
+ conv =>
1067
+ lhs
1068
+ congr
1069
+ · skip
1070
+ · ext x
1071
+ rw [WithTop.iInf_empty]
1072
+ rw [WithTop.iInf_empty, lintegral_const]
1073
+ rw [ENNReal.top_mul', if_neg]
1074
+ simp only [Measure.measure_univ_eq_zero, hμ, not_false_iff]
1075
+ inhabit β
1076
+ have : ∀ a, ⨅ b, f b a = ⨅ n, f (h_directed.sequence f n) a := by
1077
+ refine' fun a =>
1078
+ le_antisymm (le_iInf fun n => iInf_le _ _)
1079
+ (le_iInf fun b => iInf_le_of_le (Encodable.encode b + 1 ) _)
1080
+ exact h_directed.sequence_le b a
1081
+ -- Porting note: used `∘` below to deal with its reduced reducibility
1082
+ calc
1083
+ ∫⁻ a, ⨅ b, f b a ∂μ
1084
+ _ = ∫⁻ a, ⨅ n, (f ∘ h_directed.sequence f) n a ∂μ := by simp only [this, Function.comp_apply]
1085
+ _ = ⨅ n, ∫⁻ a, (f ∘ h_directed.sequence f) n a ∂μ := by
1086
+ rw [lintegral_iInf ?_ h_directed.sequence_anti]
1087
+ · exact hf_int _
1088
+ · exact (fun n => hf _)
1089
+ _ = ⨅ b, ∫⁻ a, f b a ∂μ := by
1090
+ refine' le_antisymm (le_iInf fun b => _) (le_iInf fun n => _)
1091
+ · exact iInf_le_of_le (Encodable.encode b + 1 ) (lintegral_mono <| h_directed.sequence_le b)
1092
+ · exact iInf_le (fun b => ∫⁻ a, f b a ∂μ) _
1093
+ #align lintegral_infi_directed_of_measurable MeasureTheory.lintegral_iInf_directed_of_measurable
1094
+
1057
1095
/-- Known as Fatou's lemma, version with `AEMeasurable` functions -/
1058
1096
theorem lintegral_liminf_le' {f : ℕ → α → ℝ≥0 ∞} (h_meas : ∀ n, AEMeasurable (f n) μ) :
1059
1097
∫⁻ a, liminf (fun n => f n a) atTop ∂μ ≤ liminf (fun n => ∫⁻ a, f n a ∂μ) atTop :=
0 commit comments