@@ -9,7 +9,7 @@ import Mathlib.Topology.Bornology.Basic
9
9
/-!
10
10
# Bornology structure on products and subtypes
11
11
12
- In this file we define `Bornology` and `BoundedSpace` instances on `α × β`, `Π i, π i`, and
12
+ In this file we define `Bornology` and `BoundedSpace` instances on `α × β`, `Π i, X i`, and
13
13
`{x // p x}`. We also prove basic lemmas about `Bornology.cobounded` and `Bornology.IsBounded`
14
14
on these types.
15
15
-/
@@ -19,16 +19,16 @@ open Set Filter Bornology Function
19
19
20
20
open Filter
21
21
22
- variable {α β ι : Type *} {π : ι → Type *} [Bornology α] [Bornology β]
23
- [∀ i, Bornology (π i)]
22
+ variable {α β ι : Type *} {X : ι → Type *} [Bornology α] [Bornology β]
23
+ [∀ i, Bornology (X i)]
24
24
25
25
instance Prod.instBornology : Bornology (α × β) where
26
26
cobounded' := (cobounded α).coprod (cobounded β)
27
27
le_cofinite' :=
28
28
@coprod_cofinite α β ▸ coprod_mono ‹Bornology α›.le_cofinite ‹Bornology β›.le_cofinite
29
29
30
- instance Pi.instBornology : Bornology (∀ i, π i) where
31
- cobounded' := Filter.coprodᵢ fun i => cobounded (π i)
30
+ instance Pi.instBornology : Bornology (∀ i, X i) where
31
+ cobounded' := Filter.coprodᵢ fun i => cobounded (X i)
32
32
le_cofinite' := iSup_le fun _ ↦ (comap_mono (Bornology.le_cofinite _)).trans (comap_cofinite_le _)
33
33
34
34
/-- Inverse image of a bornology. -/
@@ -59,7 +59,7 @@ lemma IsBounded.image_fst {s : Set (α × β)} (hs : IsBounded s) : IsBounded (P
59
59
lemma IsBounded.image_snd {s : Set (α × β)} (hs : IsBounded s) : IsBounded (Prod.snd '' s) :=
60
60
(isBounded_image_fst_and_snd.2 hs).2
61
61
62
- variable {s : Set α} {t : Set β} {S : ∀ i, Set (π i)}
62
+ variable {s : Set α} {t : Set β} {S : ∀ i, Set (X i)}
63
63
64
64
theorem IsBounded.fst_of_prod (h : IsBounded (s ×ˢ t)) (ht : t.Nonempty) : IsBounded s :=
65
65
fst_image_prod s ht ▸ h.image_fst
@@ -85,18 +85,18 @@ theorem isBounded_prod_self : IsBounded (s ×ˢ s) ↔ IsBounded s := by
85
85
exact (isBounded_prod_of_nonempty (hs.prod hs)).trans and_self_iff
86
86
87
87
/-!
88
- ### Bounded sets in `Π i, π i`
88
+ ### Bounded sets in `Π i, X i`
89
89
-/
90
90
91
91
92
- theorem cobounded_pi : cobounded (∀ i, π i) = Filter.coprodᵢ fun i => cobounded (π i) :=
92
+ theorem cobounded_pi : cobounded (∀ i, X i) = Filter.coprodᵢ fun i => cobounded (X i) :=
93
93
rfl
94
94
95
- theorem forall_isBounded_image_eval_iff {s : Set (∀ i, π i)} :
95
+ theorem forall_isBounded_image_eval_iff {s : Set (∀ i, X i)} :
96
96
(∀ i, IsBounded (eval i '' s)) ↔ IsBounded s :=
97
97
compl_mem_coprodᵢ.symm
98
98
99
- lemma IsBounded.image_eval {s : Set (∀ i, π i)} (hs : IsBounded s) (i : ι) :
99
+ lemma IsBounded.image_eval {s : Set (∀ i, X i)} (hs : IsBounded s) (i : ι) :
100
100
IsBounded (eval i '' s) :=
101
101
forall_isBounded_image_eval_iff.2 hs i
102
102
@@ -139,7 +139,7 @@ open Bornology
139
139
instance [BoundedSpace α] [BoundedSpace β] : BoundedSpace (α × β) := by
140
140
simp [← cobounded_eq_bot_iff, cobounded_prod]
141
141
142
- instance [∀ i, BoundedSpace (π i)] : BoundedSpace (∀ i, π i) := by
142
+ instance [∀ i, BoundedSpace (X i)] : BoundedSpace (∀ i, X i) := by
143
143
simp [← cobounded_eq_bot_iff, cobounded_pi]
144
144
145
145
theorem boundedSpace_induced_iff {α β : Type *} [Bornology β] {f : α → β} :
0 commit comments