Skip to content

Commit 051be89

Browse files
committed
chore(Topology): rename pi family from π to X (#26828)
As discussed in [#mathlib4 > Style for naming a pi type in topology/analysis files](https://leanprover.zulipchat.com/#narrow/channel/287929-mathlib4/topic/Style.20for.20naming.20a.20pi.20type.20in.20topology.2Fanalysis.20files/with/503532322)
1 parent d6f4a82 commit 051be89

24 files changed

+233
-233
lines changed

Mathlib/Topology/AlexandrovDiscrete.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -221,8 +221,8 @@ instance Quotient.instAlexandrovDiscrete {s : Setoid α} : AlexandrovDiscrete (Q
221221
instance Sum.instAlexandrovDiscrete : AlexandrovDiscrete (α ⊕ β) :=
222222
alexandrovDiscrete_coinduced.sup alexandrovDiscrete_coinduced
223223

224-
instance Sigma.instAlexandrovDiscrete {ι : Type*} {π : ι → Type*} [∀ i, TopologicalSpace (π i)]
225-
[∀ i, AlexandrovDiscrete (π i)] : AlexandrovDiscrete (Σ i, π i) :=
224+
instance Sigma.instAlexandrovDiscrete {ι : Type*} {X : ι → Type*} [∀ i, TopologicalSpace (X i)]
225+
[∀ i, AlexandrovDiscrete (X i)] : AlexandrovDiscrete (Σ i, X i) :=
226226
alexandrovDiscrete_iSup fun _ ↦ alexandrovDiscrete_coinduced
227227

228228
end

Mathlib/Topology/Algebra/InfiniteSum/Constructions.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -303,19 +303,19 @@ end CompleteSpace
303303

304304
section Pi
305305

306-
variable {ι : Type*} {π : α → Type*} [∀ x, CommMonoid (π x)] [∀ x, TopologicalSpace (π x)]
306+
variable {ι : Type*} {X : α → Type*} [∀ x, CommMonoid (X x)] [∀ x, TopologicalSpace (X x)]
307307

308308
@[to_additive]
309-
theorem Pi.hasProd {f : ι → ∀ x, π x} {g : ∀ x, π x} :
309+
theorem Pi.hasProd {f : ι → ∀ x, X x} {g : ∀ x, X x} :
310310
HasProd f g ↔ ∀ x, HasProd (fun i ↦ f i x) (g x) := by
311311
simp only [HasProd, tendsto_pi_nhds, prod_apply]
312312

313313
@[to_additive]
314-
theorem Pi.multipliable {f : ι → ∀ x, π x} : Multipliable f ↔ ∀ x, Multipliable fun i ↦ f i x := by
314+
theorem Pi.multipliable {f : ι → ∀ x, X x} : Multipliable f ↔ ∀ x, Multipliable fun i ↦ f i x := by
315315
simp only [Multipliable, Pi.hasProd, Classical.skolem]
316316

317317
@[to_additive]
318-
theorem tprod_apply [∀ x, T2Space (π x)] {f : ι → ∀ x, π x} {x : α} (hf : Multipliable f) :
318+
theorem tprod_apply [∀ x, T2Space (X x)] {f : ι → ∀ x, X x} {x : α} (hf : Multipliable f) :
319319
(∏' i, f i) x = ∏' i, f i x :=
320320
(Pi.hasProd.mp hf.hasProd x).tprod_eq.symm
321321

Mathlib/Topology/Algebra/Module/Equiv.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -104,7 +104,7 @@ def iInfKerProjEquiv {I J : Set ι} [DecidablePred fun i => i ∈ I] (hd : Disjo
104104
toLinearEquiv := LinearMap.iInfKerProjEquiv R φ hd hu
105105
continuous_toFun :=
106106
continuous_pi fun i =>
107-
Continuous.comp (continuous_apply (π := φ) i) <|
107+
Continuous.comp (continuous_apply (A := φ) i) <|
108108
@continuous_subtype_val _ _ fun x =>
109109
x ∈ (⨅ i ∈ J, ker (proj i : (∀ i, φ i) →L[R] φ i) : Submodule R (∀ i, φ i))
110110
continuous_invFun :=

Mathlib/Topology/Algebra/Order/LiminfLimsup.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ open scoped Topology
2727

2828
universe u v
2929

30-
variable {ι α β R S : Type*} {π : ι → Type*}
30+
variable {ι α β R S : Type*} {X : ι → Type*}
3131

3232
section LiminfLimsupAdd
3333

Mathlib/Topology/Bases.lean

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -576,9 +576,9 @@ theorem isTopologicalBasis_subtype
576576
h.isInducing ⟨rfl⟩
577577

578578
section
579-
variable {ι : Type*} {π : ι → Type*} [∀ i, TopologicalSpace (π i)]
579+
variable {ι : Type*} {X : ι → Type*} [∀ i, TopologicalSpace (X i)]
580580

581-
lemma isOpenMap_eval (i : ι) : IsOpenMap (Function.eval i : (∀ i, π i) → π i) := by
581+
lemma isOpenMap_eval (i : ι) : IsOpenMap (Function.eval i : (∀ i, X i) → X i) := by
582582
classical
583583
refine (isTopologicalBasis_pi fun _ ↦ isTopologicalBasis_opens).isOpenMap_iff.2 ?_
584584
rintro _ ⟨U, s, hU, rfl⟩
@@ -687,8 +687,8 @@ instance {β} [TopologicalSpace β] [FirstCountableTopology α] [FirstCountableT
687687

688688
section Pi
689689

690-
instance {ι : Type*} {π : ι → Type*} [Countable ι] [∀ i, TopologicalSpace (π i)]
691-
[∀ i, FirstCountableTopology (π i)] : FirstCountableTopology (∀ i, π i) :=
690+
instance {ι : Type*} {X : ι → Type*} [Countable ι] [∀ i, TopologicalSpace (X i)]
691+
[∀ i, FirstCountableTopology (X i)] : FirstCountableTopology (∀ i, X i) :=
692692
fun f => by rw [nhds_pi]; infer_instance⟩
693693

694694
end Pi
@@ -810,8 +810,8 @@ instance {β : Type*} [TopologicalSpace β] [SecondCountableTopology α] [Second
810810
((isBasis_countableBasis α).prod (isBasis_countableBasis β)).secondCountableTopology <|
811811
(countable_countableBasis α).image2 (countable_countableBasis β) _
812812

813-
instance {ι : Type*} {π : ι → Type*} [Countable ι] [∀ a, TopologicalSpace (π a)]
814-
[∀ a, SecondCountableTopology (π a)] : SecondCountableTopology (∀ a, π a) :=
813+
instance {ι : Type*} {X : ι → Type*} [Countable ι] [∀ a, TopologicalSpace (X a)]
814+
[∀ a, SecondCountableTopology (X a)] : SecondCountableTopology (∀ a, X a) :=
815815
secondCountableTopology_iInf fun _ => secondCountableTopology_induced _ _ _
816816

817817
-- see Note [lower instance priority]
@@ -949,8 +949,8 @@ theorem IsTopologicalBasis.isQuotientMap {V : Set (Set X)} (hV : IsTopologicalBa
949949
have x_in_W : x ∈ W := y_in_U
950950
have W_open : IsOpen W := U_open.preimage h'.continuous
951951
obtain ⟨Z, Z_in_V, x_in_Z, Z_in_W⟩ := hV.exists_subset_of_mem_open x_in_W W_open
952-
have πZ_in_U : π '' Z ⊆ U := (Set.image_subset _ Z_in_W).trans (image_preimage_subset π U)
953-
exact ⟨π '' Z, ⟨Z, Z_in_V, rfl⟩, ⟨x, x_in_Z, rfl⟩, πZ_in_U
952+
have XZ_in_U : π '' Z ⊆ U := (Set.image_subset _ Z_in_W).trans (image_preimage_subset π U)
953+
exact ⟨π '' Z, ⟨Z, Z_in_V, rfl⟩, ⟨x, x_in_Z, rfl⟩, XZ_in_U
954954

955955
@[deprecated (since := "2024-10-22")]
956956
alias IsTopologicalBasis.quotientMap := IsTopologicalBasis.isQuotientMap

Mathlib/Topology/Bornology/Constructions.lean

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -9,7 +9,7 @@ import Mathlib.Topology.Bornology.Basic
99
/-!
1010
# Bornology structure on products and subtypes
1111
12-
In this file we define `Bornology` and `BoundedSpace` instances on `α × β`, `Π i, π i`, and
12+
In this file we define `Bornology` and `BoundedSpace` instances on `α × β`, `Π i, X i`, and
1313
`{x // p x}`. We also prove basic lemmas about `Bornology.cobounded` and `Bornology.IsBounded`
1414
on these types.
1515
-/
@@ -19,16 +19,16 @@ open Set Filter Bornology Function
1919

2020
open Filter
2121

22-
variable {α β ι : Type*} {π : ι → Type*} [Bornology α] [Bornology β]
23-
[∀ i, Bornology (π i)]
22+
variable {α β ι : Type*} {X : ι → Type*} [Bornology α] [Bornology β]
23+
[∀ i, Bornology (X i)]
2424

2525
instance Prod.instBornology : Bornology (α × β) where
2626
cobounded' := (cobounded α).coprod (cobounded β)
2727
le_cofinite' :=
2828
@coprod_cofinite α β ▸ coprod_mono ‹Bornology α›.le_cofinite ‹Bornology β›.le_cofinite
2929

30-
instance Pi.instBornology : Bornology (∀ i, π i) where
31-
cobounded' := Filter.coprodᵢ fun i => cobounded (π i)
30+
instance Pi.instBornology : Bornology (∀ i, X i) where
31+
cobounded' := Filter.coprodᵢ fun i => cobounded (X i)
3232
le_cofinite' := iSup_le fun _ ↦ (comap_mono (Bornology.le_cofinite _)).trans (comap_cofinite_le _)
3333

3434
/-- Inverse image of a bornology. -/
@@ -59,7 +59,7 @@ lemma IsBounded.image_fst {s : Set (α × β)} (hs : IsBounded s) : IsBounded (P
5959
lemma IsBounded.image_snd {s : Set (α × β)} (hs : IsBounded s) : IsBounded (Prod.snd '' s) :=
6060
(isBounded_image_fst_and_snd.2 hs).2
6161

62-
variable {s : Set α} {t : Set β} {S : ∀ i, Set (π i)}
62+
variable {s : Set α} {t : Set β} {S : ∀ i, Set (X i)}
6363

6464
theorem IsBounded.fst_of_prod (h : IsBounded (s ×ˢ t)) (ht : t.Nonempty) : IsBounded s :=
6565
fst_image_prod s ht ▸ h.image_fst
@@ -85,18 +85,18 @@ theorem isBounded_prod_self : IsBounded (s ×ˢ s) ↔ IsBounded s := by
8585
exact (isBounded_prod_of_nonempty (hs.prod hs)).trans and_self_iff
8686

8787
/-!
88-
### Bounded sets in `Π i, π i`
88+
### Bounded sets in `Π i, X i`
8989
-/
9090

9191

92-
theorem cobounded_pi : cobounded (∀ i, π i) = Filter.coprodᵢ fun i => cobounded (π i) :=
92+
theorem cobounded_pi : cobounded (∀ i, X i) = Filter.coprodᵢ fun i => cobounded (X i) :=
9393
rfl
9494

95-
theorem forall_isBounded_image_eval_iff {s : Set (∀ i, π i)} :
95+
theorem forall_isBounded_image_eval_iff {s : Set (∀ i, X i)} :
9696
(∀ i, IsBounded (eval i '' s)) ↔ IsBounded s :=
9797
compl_mem_coprodᵢ.symm
9898

99-
lemma IsBounded.image_eval {s : Set (∀ i, π i)} (hs : IsBounded s) (i : ι) :
99+
lemma IsBounded.image_eval {s : Set (∀ i, X i)} (hs : IsBounded s) (i : ι) :
100100
IsBounded (eval i '' s) :=
101101
forall_isBounded_image_eval_iff.2 hs i
102102

@@ -139,7 +139,7 @@ open Bornology
139139
instance [BoundedSpace α] [BoundedSpace β] : BoundedSpace (α × β) := by
140140
simp [← cobounded_eq_bot_iff, cobounded_prod]
141141

142-
instance [∀ i, BoundedSpace (π i)] : BoundedSpace (∀ i, π i) := by
142+
instance [∀ i, BoundedSpace (X i)] : BoundedSpace (∀ i, X i) := by
143143
simp [← cobounded_eq_bot_iff, cobounded_pi]
144144

145145
theorem boundedSpace_induced_iff {α β : Type*} [Bornology β] {f : α → β} :

Mathlib/Topology/Connected/Basic.lean

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ open Set Function Topology TopologicalSpace Relation
3838

3939
universe u v
4040

41-
variable {α : Type u} {β : Type v} {ι : Type*} {π : ι → Type*} [TopologicalSpace α]
41+
variable {α : Type u} {β : Type v} {ι : Type*} {X : ι → Type*} [TopologicalSpace α]
4242
{s t u v : Set α}
4343

4444
section Preconnected
@@ -423,7 +423,7 @@ theorem IsConnected.prod [TopologicalSpace β] {s : Set α} {t : Set β} (hs : I
423423
(ht : IsConnected t) : IsConnected (s ×ˢ t) :=
424424
⟨hs.1.prod ht.1, hs.2.prod ht.2
425425

426-
theorem isPreconnected_univ_pi [∀ i, TopologicalSpace (π i)] {s : ∀ i, Set (π i)}
426+
theorem isPreconnected_univ_pi [∀ i, TopologicalSpace (X i)] {s : ∀ i, Set (X i)}
427427
(hs : ∀ i, IsPreconnected (s i)) : IsPreconnected (pi univ s) := by
428428
rintro u v uo vo hsuv ⟨f, hfs, hfu⟩ ⟨g, hgs, hgv⟩
429429
classical
@@ -449,7 +449,7 @@ theorem isPreconnected_univ_pi [∀ i, TopologicalSpace (π i)] {s : ∀ i, Set
449449
exact inter_subset_inter_left _ hsub
450450

451451
@[simp]
452-
theorem isConnected_univ_pi [∀ i, TopologicalSpace (π i)] {s : ∀ i, Set (π i)} :
452+
theorem isConnected_univ_pi [∀ i, TopologicalSpace (X i)] {s : ∀ i, Set (X i)} :
453453
IsConnected (pi univ s) ↔ ∀ i, IsConnected (s i) := by
454454
simp only [IsConnected, ← univ_pi_nonempty_iff, forall_and, and_congr_right_iff]
455455
refine fun hne => ⟨fun hc i => ?_, isPreconnected_univ_pi⟩
@@ -688,11 +688,11 @@ instance [TopologicalSpace β] [PreconnectedSpace α] [PreconnectedSpace β] :
688688
instance [TopologicalSpace β] [ConnectedSpace α] [ConnectedSpace β] : ConnectedSpace (α × β) :=
689689
⟨inferInstance⟩
690690

691-
instance [∀ i, TopologicalSpace (π i)] [∀ i, PreconnectedSpace (π i)] :
692-
PreconnectedSpace (∀ i, π i) :=
691+
instance [∀ i, TopologicalSpace (X i)] [∀ i, PreconnectedSpace (X i)] :
692+
PreconnectedSpace (∀ i, X i) :=
693693
by rw [← pi_univ univ]; exact isPreconnected_univ_pi fun i => isPreconnected_univ⟩
694694

695-
instance [∀ i, TopologicalSpace (π i)] [∀ i, ConnectedSpace (π i)] : ConnectedSpace (∀ i, π i) :=
695+
instance [∀ i, TopologicalSpace (X i)] [∀ i, ConnectedSpace (X i)] : ConnectedSpace (∀ i, X i) :=
696696
⟨inferInstance⟩
697697

698698
-- see Note [lower instance priority]

Mathlib/Topology/Connected/Clopen.lean

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -25,7 +25,7 @@ open Set Function Topology TopologicalSpace Relation
2525

2626
universe u v
2727

28-
variable {α : Type u} {β : Type v} {ι : Type*} {π : ι → Type*} [TopologicalSpace α]
28+
variable {α : Type u} {β : Type v} {ι : Type*} {X : ι → Type*} [TopologicalSpace α]
2929
{s t u v : Set α}
3030

3131
section Preconnected
@@ -35,7 +35,7 @@ theorem IsPreconnected.subset_isClopen {s t : Set α} (hs : IsPreconnected s) (h
3535
(hne : (s ∩ t).Nonempty) : s ⊆ t :=
3636
hs.subset_left_of_subset_union ht.isOpen ht.compl.isOpen disjoint_compl_right (by simp) hne
3737

38-
theorem Sigma.isConnected_iff [∀ i, TopologicalSpace (π i)] {s : Set (Σ i, π i)} :
38+
theorem Sigma.isConnected_iff [∀ i, TopologicalSpace (X i)] {s : Set (Σ i, X i)} :
3939
IsConnected s ↔ ∃ i t, IsConnected t ∧ s = Sigma.mk i '' t := by
4040
refine ⟨fun hs => ?_, ?_⟩
4141
· obtain ⟨⟨i, x⟩, hx⟩ := hs.nonempty
@@ -46,8 +46,8 @@ theorem Sigma.isConnected_iff [∀ i, TopologicalSpace (π i)] {s : Set (Σ i,
4646
· rintro ⟨i, t, ht, rfl⟩
4747
exact ht.image _ continuous_sigmaMk.continuousOn
4848

49-
theorem Sigma.isPreconnected_iff [hι : Nonempty ι] [∀ i, TopologicalSpace (π i)]
50-
{s : Set (Σ i, π i)} : IsPreconnected s ↔ ∃ i t, IsPreconnected t ∧ s = Sigma.mk i '' t := by
49+
theorem Sigma.isPreconnected_iff [hι : Nonempty ι] [∀ i, TopologicalSpace (X i)]
50+
{s : Set (Σ i, X i)} : IsPreconnected s ↔ ∃ i t, IsPreconnected t ∧ s = Sigma.mk i '' t := by
5151
refine ⟨fun hs => ?_, ?_⟩
5252
· obtain rfl | h := s.eq_empty_or_nonempty
5353
· exact ⟨Classical.choice hι, ∅, isPreconnected_empty, (Set.image_empty _).symm⟩
@@ -88,12 +88,12 @@ theorem Sum.isPreconnected_iff [TopologicalSpace β] {s : Set (α ⊕ β)} :
8888
· exact ht.image _ continuous_inl.continuousOn
8989
· exact ht.image _ continuous_inr.continuousOn
9090

91-
/-- A continuous map from a connected space to a disjoint union `Σ i, π i` can be lifted to one of
92-
the components `π i`. See also `ContinuousMap.exists_lift_sigma` for a version with bundled
91+
/-- A continuous map from a connected space to a disjoint union `Σ i, X i` can be lifted to one of
92+
the components `X i`. See also `ContinuousMap.exists_lift_sigma` for a version with bundled
9393
`ContinuousMap`s. -/
94-
theorem Continuous.exists_lift_sigma [ConnectedSpace α] [∀ i, TopologicalSpace (π i)]
95-
{f : α → Σ i, π i} (hf : Continuous f) :
96-
∃ (i : ι) (g : α → π i), Continuous g ∧ f = Sigma.mk i ∘ g := by
94+
theorem Continuous.exists_lift_sigma [ConnectedSpace α] [∀ i, TopologicalSpace (X i)]
95+
{f : α → Σ i, X i} (hf : Continuous f) :
96+
∃ (i : ι) (g : α → X i), Continuous g ∧ f = Sigma.mk i ∘ g := by
9797
obtain ⟨i, hi⟩ : ∃ i, range f ⊆ range (.mk i) := by
9898
rcases Sigma.isConnected_iff.1 (isConnected_range hf) with ⟨i, s, -, hs⟩
9999
exact ⟨i, hs.trans_subset (image_subset_range _ _)⟩

Mathlib/Topology/Connected/LocallyConnected.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ open Set Topology
1818

1919
universe u v
2020

21-
variable {α : Type u} {β : Type v} {ι : Type*} {π : ι → Type*} [TopologicalSpace α]
21+
variable {α : Type u} {β : Type v} {ι : Type*} {X : ι → Type*} [TopologicalSpace α]
2222
{s t u v : Set α}
2323

2424
section LocallyConnectedSpace

Mathlib/Topology/Connected/TotallyDisconnected.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ open Function Set Topology
2222

2323
universe u v
2424

25-
variable {α : Type u} {β : Type v} {ι : Type*} {π : ι → Type*} [TopologicalSpace α]
25+
variable {α : Type u} {β : Type v} {ι : Type*} {X : ι → Type*} [TopologicalSpace α]
2626
{s t u v : Set α}
2727

2828
section TotallyDisconnected
@@ -72,8 +72,8 @@ instance [TopologicalSpace β] [TotallyDisconnectedSpace α] [TotallyDisconnecte
7272
· exact ht.subsingleton.image _
7373
· exact ht.subsingleton.image _
7474

75-
instance [∀ i, TopologicalSpace (π i)] [∀ i, TotallyDisconnectedSpace (π i)] :
76-
TotallyDisconnectedSpace (Σ i, π i) := by
75+
instance [∀ i, TopologicalSpace (X i)] [∀ i, TotallyDisconnectedSpace (X i)] :
76+
TotallyDisconnectedSpace (Σi, X i) := by
7777
refine ⟨fun s _ hs => ?_⟩
7878
obtain rfl | h := s.eq_empty_or_nonempty
7979
· exact subsingleton_empty

0 commit comments

Comments
 (0)