@@ -497,7 +497,7 @@ theorem mul_div_cancel'' (a b : G) : a * b / b = a :=
497
497
498
498
@[simp, to_additive]
499
499
theorem mul_div_mul_right_eq_div (a b c : G) : a * c / (b * c) = a / b := by
500
- rw [div_mul_eq_div_div_swap] <;> simp only [mul_left_inj, eq_self_iff_true, mul_div_cancel'']
500
+ rw [div_mul_eq_div_div_swap]; simp only [mul_left_inj, eq_self_iff_true, mul_div_cancel'']
501
501
502
502
@[to_additive eq_sub_of_add_eq]
503
503
theorem eq_div_of_mul_eq' (h : a * c = b) : a = b / c := by simp [← h]
@@ -633,8 +633,8 @@ theorem div_eq_iff_eq_mul' : a / b = c ↔ a = b * c := by rw [div_eq_iff_eq_mul
633
633
theorem mul_div_cancel''' (a b : G) : a * b / a = b := by rw [div_eq_inv_mul, inv_mul_cancel_left]
634
634
635
635
@[simp, to_additive]
636
- theorem mul_div_cancel'_right (a b : G) : a * (b / a) = b :=
637
- by rw [← mul_div_assoc, mul_div_cancel''']
636
+ theorem mul_div_cancel'_right (a b : G) : a * (b / a) = b := by
637
+ rw [← mul_div_assoc, mul_div_cancel''']
638
638
639
639
@[simp, to_additive sub_add_cancel']
640
640
theorem div_mul_cancel'' (a b : G) : a / (a * b) = b⁻¹ := by rw [← inv_div, mul_div_cancel''']
@@ -643,24 +643,24 @@ theorem div_mul_cancel'' (a b : G) : a / (a * b) = b⁻¹ := by rw [← inv_div,
643
643
-- along with the additive version `add_neg_cancel_comm_assoc`,
644
644
-- defined in `algebra/group/commute`
645
645
@[to_additive]
646
- theorem mul_mul_inv_cancel'_right (a b : G) : a * (b * a⁻¹) = b :=
647
- by rw [← div_eq_mul_inv, mul_div_cancel'_right a b]
646
+ theorem mul_mul_inv_cancel'_right (a b : G) : a * (b * a⁻¹) = b := by
647
+ rw [← div_eq_mul_inv, mul_div_cancel'_right a b]
648
648
649
649
@[simp, to_additive]
650
- theorem mul_mul_div_cancel (a b c : G) : a * c * (b / c) = a * b :=
651
- by rw [mul_assoc, mul_div_cancel'_right]
650
+ theorem mul_mul_div_cancel (a b c : G) : a * c * (b / c) = a * b := by
651
+ rw [mul_assoc, mul_div_cancel'_right]
652
652
653
653
@[simp, to_additive]
654
- theorem div_mul_mul_cancel (a b c : G) : a / c * (b * c) = a * b :=
655
- by rw [mul_left_comm, div_mul_cancel', mul_comm]
654
+ theorem div_mul_mul_cancel (a b c : G) : a / c * (b * c) = a * b := by
655
+ rw [mul_left_comm, div_mul_cancel', mul_comm]
656
656
657
657
@[simp, to_additive sub_add_sub_cancel']
658
- theorem div_mul_div_cancel'' (a b c : G) : a / b * (c / a) = c / b :=
659
- by rw [mul_comm] <;> apply div_mul_div_cancel'
658
+ theorem div_mul_div_cancel'' (a b c : G) : a / b * (c / a) = c / b := by
659
+ rw [mul_comm]; apply div_mul_div_cancel'
660
660
661
661
@[simp, to_additive]
662
- theorem mul_div_div_cancel (a b c : G) : a * b / (a / c) = b * c :=
663
- by rw [← div_mul, mul_div_cancel''']
662
+ theorem mul_div_div_cancel (a b c : G) : a * b / (a / c) = b * c := by
663
+ rw [← div_mul, mul_div_cancel''']
664
664
665
665
@[simp, to_additive]
666
666
theorem div_div_div_cancel_left (a b c : G) : c / a / (c / b) = b / a := by
0 commit comments