@@ -80,13 +80,13 @@ reflection of `A`, with the isomorphism as `η_A`.
80
80
81
81
(For any `B` in the reflective subcategory, we automatically have that `ε_B` is an iso.)
82
82
-/
83
- theorem Functor.essImage.unit_isIso [Reflective i] {A : C} (h : A ∈ i.essImage) :
83
+ theorem Functor.essImage.unit_isIso [Reflective i] {A : C} (h : i.essImage A ) :
84
84
IsIso ((reflectorAdjunction i).unit.app A) := by
85
85
rwa [isIso_unit_app_iff_mem_essImage]
86
86
87
87
/-- If `η_A` is a split monomorphism, then `A` is in the reflective subcategory. -/
88
88
theorem mem_essImage_of_unit_isSplitMono [Reflective i] {A : C}
89
- [IsSplitMono ((reflectorAdjunction i).unit.app A)] : A ∈ i.essImage := by
89
+ [IsSplitMono ((reflectorAdjunction i).unit.app A)] : i.essImage A := by
90
90
let η : 𝟭 C ⟶ reflector i ⋙ i := (reflectorAdjunction i).unit
91
91
haveI : IsIso (η.app (i.obj ((reflector i).obj A))) :=
92
92
Functor.essImage.unit_isIso ((i.obj_mem_essImage _))
@@ -126,7 +126,7 @@ This establishes there is a natural bijection `(A ⟶ B) ≃ (i.obj (L.obj A)
126
126
from the point of view of objects in `D`, `A` and `i.obj (L.obj A)` look the same: specifically
127
127
that `η.app A` is an isomorphism.
128
128
-/
129
- def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : B ∈ i.essImage) :
129
+ def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : i.essImage B ) :
130
130
(A ⟶ B) ≃ (i.obj ((reflector i).obj A) ⟶ B) :=
131
131
calc
132
132
(A ⟶ B) ≃ (A ⟶ i.obj (Functor.essImage.witness hB)) := Iso.homCongr (Iso.refl _) hB.getIso.symm
@@ -135,17 +135,17 @@ def unitCompPartialBijective [Reflective i] (A : C) {B : C} (hB : B ∈ i.essIma
135
135
Iso.homCongr (Iso.refl _) (Functor.essImage.getIso hB)
136
136
137
137
@[simp]
138
- theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB : B ∈ i.essImage)
138
+ theorem unitCompPartialBijective_symm_apply [Reflective i] (A : C) {B : C} (hB : i.essImage B )
139
139
(f) : (unitCompPartialBijective A hB).symm f = (reflectorAdjunction i).unit.app A ≫ f := by
140
140
simp [unitCompPartialBijective, unitCompPartialBijectiveAux_symm_apply]
141
141
142
142
theorem unitCompPartialBijective_symm_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
143
- (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : i.obj ((reflector i).obj A) ⟶ B) :
143
+ (hB : i.essImage B ) (hB' : i.essImage B' ) (f : i.obj ((reflector i).obj A) ⟶ B) :
144
144
(unitCompPartialBijective A hB').symm (f ≫ h) = (unitCompPartialBijective A hB).symm f ≫ h := by
145
145
simp
146
146
147
147
theorem unitCompPartialBijective_natural [Reflective i] (A : C) {B B' : C} (h : B ⟶ B')
148
- (hB : B ∈ i.essImage) (hB' : B' ∈ i.essImage) (f : A ⟶ B) :
148
+ (hB : i.essImage B ) (hB' : i.essImage B' ) (f : A ⟶ B) :
149
149
(unitCompPartialBijective A hB') (f ≫ h) = unitCompPartialBijective A hB f ≫ h := by
150
150
rw [← Equiv.eq_symm_apply, unitCompPartialBijective_symm_natural A h, Equiv.symm_apply_apply]
151
151
@@ -206,12 +206,12 @@ example [Coreflective j] {B : C} : IsIso ((coreflectorAdjunction j).counit.app (
206
206
207
207
variable {j}
208
208
209
- lemma Functor.essImage.counit_isIso [Coreflective j] {A : D} (h : A ∈ j.essImage) :
209
+ lemma Functor.essImage.counit_isIso [Coreflective j] {A : D} (h : j.essImage A ) :
210
210
IsIso ((coreflectorAdjunction j).counit.app A) := by
211
211
rwa [isIso_counit_app_iff_mem_essImage]
212
212
213
213
lemma mem_essImage_of_counit_isSplitEpi [Coreflective j] {A : D}
214
- [IsSplitEpi ((coreflectorAdjunction j).counit.app A)] : A ∈ j.essImage := by
214
+ [IsSplitEpi ((coreflectorAdjunction j).counit.app A)] : j.essImage A := by
215
215
let ε : coreflector j ⋙ j ⟶ 𝟭 D := (coreflectorAdjunction j).counit
216
216
haveI : IsIso (ε.app (j.obj ((coreflector j).obj A))) :=
217
217
Functor.essImage.counit_isIso ((j.obj_mem_essImage _))
0 commit comments